
- •Теория электромагнитного поля
- •1. Общие вопросы теории электромагнитного поля
- •1.1. Определение электромагнитного поля
- •1.2. Краткая характеристика математического аппарата теории эмп
- •1.3. Определения векторов напряжённости электрического поля и магнитной индукции
- •В соответствии с этим определением электрическая сила, действующая на точечный заряд q равна:
- •1.4. Определения векторов электрического смещения и напряжённости магнитного поля в вакууме
- •1.5. Первичные физические источники эмп
- •1.6. Электрическая поляризованность вещества. Намагниченность вещества
- •1.7. Общие определения векторов электрического смещения и напряжённости магнитного поля
- •1.8. Объёмная плотность заряда. Плотность тока
- •1.9. Упражнения в comsol Script
- •1.10. Уравнения эмп в интегральной форме
- •1.11. Уравнения эмп в дифференциальной форме (уравнения Максвелла) для неподвижных сред
- •1.12. Упражнения по анализу заданных полей векторов эмп с использованием уравнений эмп в дифференциальной форме
- •1.13. Соотношения между векторами поля и электрофизическими свойствами среды
- •Способы глобальной линеаризации уравнений материальной связи
- •1.14. Упражнения по построению графиков электрофизических характеристик материалов по справочным данным с помощью comsol Script
- •1.15. Энергия электромагнитного поля. Мощность тепловых потерь энергии при протекании токов проводимости. Мощность сторонних источников эмп
- •1.16. Упражнения по энергетическому анализу заданных полей векторов эмп с использованием comsol Script
- •1.17. Граничные условия для векторов эмп на поверхностях раздела сред. Понятие о поверхностном роторе и поверхностной дивергенции векторного поля
- •1.18. Закон сохранения заряда в дифференциальной и интегральной форме
- •1.19. Граничные условия для компонентов плотности тока на поверхностях раздела сред
- •1.20. Теорема Умова-Пойнтинга
- •1.21. Упражнения по анализу энергетических потоков в заданных полях векторов эмп с использованием comsol Script и теоремы Умова-Пойнтинга
- •2. Электростатическое поле
- •2.1. Определение электростатического поля
- •2.2. Законы электростатического поля в интегральной и дифференциальной форме. Линеаризованное уравнение материальной связи
- •2.3. Граничные условия для векторов электростатического поля на поверхностях раздела диэлектриков и на поверхностях проводников
- •2.4. Понятие о скалярном электрическом потенциале
- •2.5. Уравнение электростатики относительно скалярного электрического потенциала
- •2.6. Коэффициентная и генеральная формы уравнения электростатики в системе Comsol Multiphysics
- •2.7. Скалярная краевая задача электростатики. Типы граничных условий (гу) на границе расчётной области. Задание гу в системе Comsol Multiphysics
- •Если в расчетной области свободные заряды отсутствуют, то
- •2.8. Технология построения моделей электростатических полей в pde Modes, в электростатических прикладных режимах ядра Comsol Multiphysics и Модуля Электромагнетизма
- •2.8.1. Моделирование в pde Modes (Coefficient Form) Навигатор моделей
- •Режимы и настройки
- •Геометрическое моделирование
- •Физическое моделирование
- •Построение сетки конечных элементов
- •Вычисление решения
- •Постпроцессорная обработка и визуализация
- •2.8.2. Моделирование в pde Modes (General Form) Навигатор моделей
- •Физическое моделирование
- •Построение сетки конечных элементов
- •Вычисление решения
- •Постпроцессорная обработка и визуализация
- •2.8.3. Моделирование в электростатическом прикладном режиме ядра comsol Multiphysics Навигатор моделей
- •Режимы и настройки
- •Физическое моделирование
- •Построение сетки конечных элементов
- •Вычисление решения
- •Постпроцессорная обработка и визуализация
- •2.8.4. Моделирование в электростатическом прикладном режиме Модуля Электромагнетизма Навигатор моделей
- •2.9. Энергия системы заряженных проводников
- •2.10. Технология расчёта энергии электростатического поля в моделях Comsol Multiphysics
- •2.11. Фундаментальное решение скалярного уравнения электростатики. Закон Кулона как следствие этого решения
- •2.12. Поле электрического диполя. Упражнение на составление вычислительного сценария расчёта такого поля в Comsol Script
- •В результате получим
- •Окончательно получим
- •Расчёт и визуализация поля электрического диполя в системе comsol Script
- •2.13. Поле бесконечно длинной заряженной оси
- •2.14. Упражнения по аналитическим расчётам параметров электростатических полей в бесконечно длинных коаксиальных системах проводников
- •2.15. Упражнения по моделированию электростатических полей в коаксиальных системах в comsol Multiphysics
- •Навигатор моделей
- •Режимы и настройки
- •Геометрическое моделирование
- •Физическое моделирование
- •Построение сетки конечных элементов
- •Вычисление решения
- •Постпроцессорная обработка и визуализация
- •Физическое моделирование
- •Режимы и настройки
- •Навигатор моделей
- •Режимы и настройки
- •Геометрическое моделирование
- •Физическое моделирование
- •Построение сетки конечных элементов
- •Вычисление решения
- •Постпроцессорная обработка и визуализация
- •Физическое моделирование
- •Постпроцессорная обработка и визуализация
- •Режимы и настройки
- •2.15.3. 2D Modeling в электростатическом прикладном режиме ядра comsol Multiphysics
- •Навигатор моделей
- •Режимы и настройки
- •Физическое моделирование
- •Постпроцессорная обработка и визуализация
- •Физическое моделирование
- •Постпроцессорная обработка и визуализация
- •Постпроцессорная обработка и визуализация
- •2.15.4. 2D Modeling в электростатическом прикладном режиме Модуля Электромагнетизма
- •Навигатор моделей
- •Постпроцессорная обработка и визуализация
- •2.16. Поле системы двух параллельных разноимённо заряженных осей
- •2.17. Поле и ёмкость параллельных цилиндров с несовпадающими осями, находящихся один внутри другого
- •2.18. Упражнения по аналитическому расчёту и моделированию в comsol Multiphysics поля и ёмкости «коаксиального» кабеля со смещённой жилой
- •2.18.1. Моделирование в pde Modes (General Form) Навигатор моделей
- •Режимы и настройки
- •Геометрическое моделирование
- •Физическое моделирование
- •Построение сетки конечных элементов
- •Вычисление решения
- •Постпроцессорная обработка и визуализация
- •2.18.2. Моделирование в электростатическом прикладном режиме ядра comsol Multiphysics Навигатор моделей
- •Режимы и настройки
- •Физическое моделирование
- •Постпроцессорная обработка и визуализация
- •2.18.3. Моделирование в электростатическом прикладном режиме Модуля Электромагнетизма
- •3.2. Граничные условия для векторов электрического поля постоянного тока в проводящей среде на границах раздела сред
- •3.3. Аналогия между электрическим полем в проводящей среде и электростатическим полем в диэлектрике
- •3.4. Коэффициентная и генеральная формы уравнения математической физики относительно скалярного электрического потенциала. Краевая задача анализа постоянного электрического поля
- •3.5. Технология построения моделей постоянных электрических полей в проводящей среде в pde Modes, в электромагнитных прикладных режимах ядра Comsol Multiphysics и Модуля Электромагнетизма
- •3.5.1. Моделирование в pde Modes (Coefficient Form) Навигатор моделей
- •Режимы и настройки
- •Геометрическое моделирование
- •Физическое моделирование
- •Построение сетки конечных элементов
- •Вычисление решения
- •Постпроцессорная обработка и визуализация
- •3.5.2. Моделирование в pde Modes (General Form) Навигатор моделей
- •Режимы и настройки
- •Физическое моделирование
- •Вычисление решения
- •Постпроцессорная обработка и визуализация
- •3.5.3. Моделирование в физическом прикладном режиме ядра comsol Multiphysics Навигатор моделей
- •Режимы и настройки
- •Физическое моделирование
- •Вычисление решения
- •Постпроцессорная обработка и визуализация
- •3.5.4. Моделирование в физическом прикладном режиме Модуля Электромагнетизма Навигатор моделей
- •3.6. Упражнения по расчётам электрических полей растекания токов заземлителей
- •3.6.1. Упражнения по аналитическим расчётам
- •3.6.2. Моделирование в comsol Multiphysics
- •3.6.2.1. Моделирование в pde Modes (General Form) Навигатор моделей
- •Геометрическое моделирование
- •Физическое моделирование
- •Построение сетки конечных элементов
- •Вычисление решения
- •Постпроцессорная обработка и визуализация
- •3.6.2.2. Моделирование в физическом прикладном режиме ядра comsol Multiphysics Навигатор моделей
- •Физическое моделирование
- •Вычисление решения
- •Постпроцессорная обработка и визуализация
- •3.6.2.3. Моделирование в физическом прикладном режиме Модуля Электромагнетизма
- •Навигатор моделей
- •Режимы и настройки
- •Вычисление решения
- •Постпроцессорная обработка и визуализация
Физическое моделирование
Установка параметров зон расчётной области
Выполним команду меню Physics/ Subdomain Settings (или нажмём клавишу F8). Развернётся диалоговое окно Subdomain Settings. В списке Subdomain selection выделяем зону 1. В строки редактирования Г впишем имена компонентов вектора электрического смещения Dx, Dy. В строку редактирования F впишем число 0. Содержимое остальных строк редактирования в группе PDE Coefficients оставим по умолчанию. Кнопкой OK закроем диалоговое окно.
Граничные условия
Выполним команду меню Physics/ Boundary Settings (или нажмём клавишу F7). Развернётся диалоговое окно Boundary Settings. В списке Boundary selection выделяем границы 1,2,3,4 (границы левой жилы кабеля). В закладке Coefficients включаем радиокнопку Dirichlet Boundary Condition. В строку редактирования R вписываем выражение -u+10. Это означает, что на левой жиле кабеля мы задали потенциал, равный +10 В относительно оболочки. Выделим, отменив текущее выделение, границы 5,6,7,8 (границы правой жилы кабеля). В строку редактирования R вписываем выражение -u-8. Это означает, что на левой жиле кабеля мы задали потенциал, равный -8 В относительно оболочки. Радиокнопкой здесь также выберем граничное условие Дирихле. На всех остальных границах (т.е. на оболочке) по умолчанию будут приняты нулевые ГУ Дирихле. Кнопкой OK закроем диалоговое окно.
Построение сетки конечных элементов
Выполним команду меню Mesh/ Initialize Mesh. Будет построена сетка, состоящая из 660 конечных элементов. Теперь выполним команду меню Mesh/ Refine Mesh. Будет построена сетка, состоящая из 2640 конечных элементов. Больше никакие действия предпринимать не будем, т.к. параметры сетки примем по умолчанию.
Вычисление решения
На главной инструментальной панели нажмём кнопку =. Решение займёт 0.297 с. В поле axes будет построен цветовой график распределения скалярного электрического потенциала в сечении кабеля.
Постпроцессорная обработка и визуализация
Рис.
2.8.2.1. Картина электрического поля в
сечении кабеля
Если выполнить те же действия, что и в п. 2.8.1, то в поле axes будет построена картина распределения скалярного электрического потенциала в сечении кабеля, как показано на рис. 2.8.1.4. Получив эту картину, выполним команду меню Postprocessing/ Plot Parameters. Раскроется диалоговое окно Plot Parameters. В этом окне откроем закладку Surface. В группе Surface Data в строку редактирования Expression впишем имя E. Откроем закладку Streamline и установим в ней флажок Streamline plot. В группе Streamline Data в строку редактирования x component впишем имя Ex, в строку редактирования y component впишем имя Ey. Кнопкой OK закроем диалоговое окно. В результате в поле axes будет построен цветовой график распределения модуля напряжённости электрического поля с изолиниями скалярного электрического потенциала и линиями напряжённости электрического поля (т.е. силовыми линиями). Эта картина показана на рис. 2.8.2.1.
2.8.3. Моделирование в электростатическом прикладном режиме ядра comsol Multiphysics Навигатор моделей
Для создания новой модели нам понадобится закладка New окна Model Navigator. В браузере прикладных режимов выберем COMSOL Multiphysics/ Electromagnetics/ Electrostatics.
В ниспадающем меню Space Dimension по умолчанию выберем 2D. В строке редактирования Dependent variables по умолчанию оставим имя зависимой переменной V. Этим именем обозначается в данном прикладном режиме скалярный электрический потенциал. В строке редактирования Application mode name по умолчанию оставим имя es. В ниспадающем меню Element по умолчанию выберем Lagrange Quadratic. Кнопкой OK закроем окно Навигатора моделей.