- •2 .3.5.1 Основные понятия ………………………………………………….….23
- •3.10. Комплексная оценка качества ip-телефонии……………………...42
- •8.1. Типы угроз в сетях ip-телефонии…………………..…79
- •Перспективы
- •1. Общие вопросы технологии ip-телефонии
- •1.1.Терминология
- •1.2ОсобенностиIp-телефонии
- •1.4 Виды соединений, взаимодействие с компьютерной сетью.
- •2 Использование протоколов Интернет в ip-телефонии.
- •2.1 Адресация в ip-сетях
- •2.2 Модель osi.
- •2.3. Основные протоколы ip-телефонии
- •2.3.1 Протокол ip версии 4
- •2.3.2 Протокол ip версии 6
- •2.3.3 Протокол tcp
- •2.3.4 Протокол udp
- •2.3.5 Протоколы rtp и rtcp
- •2.3.5.1 Основные понятия
- •2.3.5.2 Групповая аудиоконференцсвязь
- •2.3.5.3 Видеоконференцсвязь
- •2.3.5.4 Понятие о микшерах и трансляторах
- •2.5.5.5. Порядок байтов, выравнивание и формат меток времени
- •2.3.5.6 . Протокол управления rtcp
- •2.3.5.7 Интенсивность передачи пакетов rtcp
- •2.3.5.8 Общее описание транслятора и микшера
- •2.3.5.9 Взаимодействие rtp с протоколами сетевого и транспортного уровней
- •3. Передача речи по ip-сети
- •3.1 Протоколы VoIp
- •3.2 Особенности передачи речевой информации по ip-сети.
- •3.3 Задержка и меры уменьшения ее влияния.
- •3.4. Явление джиттера, меры уменьшения его влияния.
- •3.5. Эхо, устройства ограничения его влияния.
- •3.6 Принципы кодирования речи
- •3.7 Кодирование формы сигнала
- •3.8 Основные требованияк алгоритмам кодирования ip-телефонии.
- •3.9 Кодеки ip-телефонии.
- •3.10. Комплексная оценка качества ip-телефонии
- •4. Протокол н.323
- •Рекомендации h.323 предусматривают:
- •Управление полосой пропускания
- •Межсетевые конференции
- •Совместимость
- •Гибкость
- •4.1. Архитектура стандарта h.323
- •4.2. Стек протоколов h.323
- •4.3. Установка соединения по h.323
- •4.4. Характеристики шлюзов ip-телефонии
- •Классификация шлюзов ip-телефонии
- •1. Автономные ip-шлюзы
- •2. Маршрутизаторы-шлюзы
- •4. Шлюзы-модули для упатс
- •5. Шлюзы с интеграцией бизнес-приложений
- •6.Учрежденческие атс на базе шлюзов
- •7. Сетевые платы с функциями телефонии
- •8. Автономные ip-телефоны
- •4.5. Достоинства и недостатки h.323
- •5. Протокол инициирования сеансов связи (sip)
- •5.1 Принципы построения протокола sip
- •5.2 Интеграция протокола sip с ip-сетями
- •5.3 Адресация
- •5.4 Архитектура сети sip
- •5.4.1 Терминал
- •5.4.2 Прокси-сервер
- •5.4.3 Сервер переадресации
- •5.4.4 Сервер определения местоположения пользователей
- •5.4.5 Пример sip-сети
- •5.5 Соединение по sip
- •6.1 Принцип декомпозиции шлюза
- •6.2 Классификация шлюзов
- •6.3 Модель организации связи
- •6.4 Команды протокола mgcp
- •7. Качество обслуживания в сетях ip-телефонии
- •7.2 Трафик реального времени в ip-сетях
- •7.3 Дифференцированное обслуживание разнотипного трафика - Diff-Serv
- •7.4. Интегрированное обслуживание IntServ
- •7.6 Протокол резервирования ресурсов - rsvp
- •7.7 Технология mpls
- •7.8 Сравнение технологий IntServ, DiffServ, mpls
- •7.9 Обслуживание очередей
- •7.9.1 Алгоритмы организации очереди
- •7.9.2 Алгоритмы обработки очередей
- •Справедливые очереди базирующиеся на классах (cbwfq)
- •Очереди с малой задержкой (llq)
- •8. Информационная безопасность в ip-сетях
- •8.1. Типы угроз в сетях ip-телефонии
- •8.2. Методы криптографической защиты информации
- •8.3. Технологии аутентификации
- •8.3.1. Протокол ppp
- •8.3.2. Протокол tacacs
- •8.3.3. Протокол radius
- •8.4. Особенности системы безопасности в ip-телефонии
- •1. Телефонный аппарат.
- •2. Установление соединения.
- •3.Телефонный разговор.
- •4. Невидимый функционал.
- •5. Общение с внешним миром.
- •8.5. Обеспечение безопасности на базе протокола osp
- •8.6. Обеспечение безопасности ip-телефонии на базе vpn
- •9. Мобильность ip-телефонии
- •9.1. Разновидности мобильности
- •9.2. Идентификация терминала и пользователя
- •9.3. Сценарии мобильности в сетях ip-телефонии
- •9.4. Мобильность в сети ip-телефонии на базе протокола sip и h.323
- •10 Системы биллинга и менеджмента пользователейIp-телефонией.
- •10. 1 Особенности учета и биллинга ip - услуг
- •10.2. Требования к системе биллинга и менеджмента пользователей ip-телефонии
- •10.3. Обзор систем биллинга и менеджмента пользователей ip-телефонии
- •11. Внедрение ip-телефонии на базе продуктовой линейки d-Link. В качестве примера, рассмотрим реализацию ip-телефоной связи на базе наиболее экономически доступного оборудования.
- •11.1. Варианты построения ip-телефонных систем
- •11.2. Применение телефонных usb-адаптеров
- •11.3. Применение VоIp-шлюзов
- •11.4. Соединение офисов с помощью сети Интернет
- •Информационное представление речевого сигнала
- •Речевые кодеки для ip-телефонии
- •Архитектура шлюза
- •Для ознакомления с работой шлюза воспользуемся следующей схемой:
- •Сетевые протоколы
- •Реализация шлюзов для ip-телефонии
- •11.5. Видеотелефония
- •Построение транков в ip-телефонии
- •Варианты связи
- •Оборудование
- •Требования к каналу
- •23 Расширения протокола управления резервированием (rsvp-te) при обобщенной многопротокольной коммутации по меткам (gmpls)
2.3. Основные протоколы ip-телефонии
2.3.1 Протокол ip версии 4
В качестве основного протокола сетевого уровня в стеке протоколов TCP/IP используется протокол IP, который изначально проектировался как протокол передачи пакетов в сетях, состоящих из большого количества локальных сетей. Поэтому протоколIPхорошо работает в сетях со сложной топологией, рационально используя наличие в них подсистем и экономно расходуя пропускную способность низкоскоростных линий связи. ПротоколIPорганизует пакетную передачу информации от узла к узлу IP-сети, не используя процедур установления соединения между источником и приемником информации. Кроме того,InternetProtocolявляется дейтаграммным протоколом: при передаче информации по протоколуIPкаждый пакет передается от узла к узлу и обрабатывается в узлах независимо от других пакетов.
Протокол IPне обеспечивает надежность доставки информации, так как он не имеет механизмов повторной передачи. Он не имеет также и механизмов управления потоком данных (flow-control). Дейтаграммы могут быть потеряны, размножены, или получены не в том порядке, в каком были переданы.
Протокол IPбазируется на протоколе уровня звена данных, который обеспечивает передачу данных по физической среде. Программный модуль, реализующий протоколIP, определяет маршрут переноса данных по сети до точки назначения, или до промежуточного маршрутизатора, где дейтаграмма извлекается из кадра локальной сети и направляется в канал, который соответствует выбранному маршруту. Дейтаграммы могут разбиваться на более мелкие фрагменты, или, наоборот, несколько дейтаграмм могут объединяться в одну на стыке разных сетей, если эти сети поддерживают передачу дейтаграмм разной длины.
В каждой рабочей станции, подключенной к IP-сети, обработка IP-дейтаграмм, производится по одним и тем же правилам адресации, фрагментации и маршрутизации. Рабочие станции рассматривают каждую дейтаграмму как независимую протокольную единицу.
На рис. 2.3 показана структура протокольной единицы протокола IP-дейтаграммы.
Поле версия (version) идентифицирует используемую версию протоколаIP, в рассматриваемом случае указывается версия 4. Необходимость этого поля объясняется тем, что в переходный период в сети могут использоваться протоколы разных версий.
Поле длина заголовка (headerlength), состоящее из 4 битов, определяет длину заголовка, причем длина указывается как количество блоков размером 32 бита. В типичном случае значение этого поля равно 5.
|
Версия (Version) |
|
Длина заголовка |
|
Тип обслуживания | ||
|
Общая длина | ||
|
Идентификатор фрагмента | ||
|
Флаги |
|
Смещение фрагмента |
|
Время жизни | ||
|
Протокол | ||
|
Контрольная сумма заголовка | ||
|
Адрес отправителя | ||
|
Адрес получателя | ||
|
Опциональные поля и заполнение | ||
|
Данные | ||
Рис. 2.3 IP-дейтаграмма
Поле тип обслуживания(TypeofService) содержит информацию, которая бывает нужна при поддержке сетью разных классов обслуживания. Использование этого поля в Интернет будет возрастать по мере роста в IP-сетях возможностей передачи мультимедийного трафика с задаваемыми параметрами качества обслуживания.
Поле общая длина(TotalLength) определяет общую длину дейтаграммы в октетах (байтах), включая заголовок и полезную нагрузку. Максимальная длина дейтаграммы составляет 65535 октетов, однако, на практике, все рабочие станции и маршрутизаторы работают с длинами, не превышающими 576 байтов. Это объясняется тем, что при превышении указанной длины, снижается эффективность работы сети.
Протокол IPиспользует 3 поля заголовка для управления фрагментацией/сборкой дейтаграмм. Как уже упоминалось, фрагментация необходима потому, что разные сети, по которым передаются дейтаграммы, имеют разные максимальные размеры кадра.
Идентификатор фрагмента(Identifier) обозначает все фрагменты одной дейтаграммы, что необходимо для ее успешной сборки на приемной стороне.
Поле флагов(Flags) обеспечивает возможность фрагментации дейтаграмм и, при использовании фрагментации, позволяет идентифицировать последний фрагмент дейтаграммы.
Поле смещение фрагмента(FragmentOffset) определяет положение фрагмента относительно исходной дейтаграммы в единицах, равных 8 октетам.
Поле время жизни(TTL-TimeToLive) используется для ограничения времени, в течение которого дейтаграмма находится в сети. Каждый маршрутизатор сети должен уменьшать значение этого поля на единицу, и отбрасывать дейтаграмму, если поле TTL приняло нулевое значение. Наличие поля TTL ограничивает возможность бесконечной циркуляции дейтаграммы по сети.
Поле протокол(Protocol) идентифицирует протокол верхнего уровня (TCP,UDPи т.д.).
Поле контрольная сумма заголовка(HeaderChecksum) обеспечивает возможность контроля ошибок в заголовке. Алгоритм подсчета контрольной суммы весьма прост, поскольку обычно протоколы нижнего уровня имеют более развитые средства контроля ошибок.
IP-дейтаграммы содержат в заголовке два адреса - отправителя (Source) и получателя(Destination),которые не меняются на протяжении всей жизни дейтаграммы.
