- •2 .3.5.1 Основные понятия ………………………………………………….….23
- •3.10. Комплексная оценка качества ip-телефонии……………………...42
- •8.1. Типы угроз в сетях ip-телефонии…………………..…79
- •Перспективы
- •1. Общие вопросы технологии ip-телефонии
- •1.1.Терминология
- •1.2ОсобенностиIp-телефонии
- •1.4 Виды соединений, взаимодействие с компьютерной сетью.
- •2 Использование протоколов Интернет в ip-телефонии.
- •2.1 Адресация в ip-сетях
- •2.2 Модель osi.
- •2.3. Основные протоколы ip-телефонии
- •2.3.1 Протокол ip версии 4
- •2.3.2 Протокол ip версии 6
- •2.3.3 Протокол tcp
- •2.3.4 Протокол udp
- •2.3.5 Протоколы rtp и rtcp
- •2.3.5.1 Основные понятия
- •2.3.5.2 Групповая аудиоконференцсвязь
- •2.3.5.3 Видеоконференцсвязь
- •2.3.5.4 Понятие о микшерах и трансляторах
- •2.5.5.5. Порядок байтов, выравнивание и формат меток времени
- •2.3.5.6 . Протокол управления rtcp
- •2.3.5.7 Интенсивность передачи пакетов rtcp
- •2.3.5.8 Общее описание транслятора и микшера
- •2.3.5.9 Взаимодействие rtp с протоколами сетевого и транспортного уровней
- •3. Передача речи по ip-сети
- •3.1 Протоколы VoIp
- •3.2 Особенности передачи речевой информации по ip-сети.
- •3.3 Задержка и меры уменьшения ее влияния.
- •3.4. Явление джиттера, меры уменьшения его влияния.
- •3.5. Эхо, устройства ограничения его влияния.
- •3.6 Принципы кодирования речи
- •3.7 Кодирование формы сигнала
- •3.8 Основные требованияк алгоритмам кодирования ip-телефонии.
- •3.9 Кодеки ip-телефонии.
- •3.10. Комплексная оценка качества ip-телефонии
- •4. Протокол н.323
- •Рекомендации h.323 предусматривают:
- •Управление полосой пропускания
- •Межсетевые конференции
- •Совместимость
- •Гибкость
- •4.1. Архитектура стандарта h.323
- •4.2. Стек протоколов h.323
- •4.3. Установка соединения по h.323
- •4.4. Характеристики шлюзов ip-телефонии
- •Классификация шлюзов ip-телефонии
- •1. Автономные ip-шлюзы
- •2. Маршрутизаторы-шлюзы
- •4. Шлюзы-модули для упатс
- •5. Шлюзы с интеграцией бизнес-приложений
- •6.Учрежденческие атс на базе шлюзов
- •7. Сетевые платы с функциями телефонии
- •8. Автономные ip-телефоны
- •4.5. Достоинства и недостатки h.323
- •5. Протокол инициирования сеансов связи (sip)
- •5.1 Принципы построения протокола sip
- •5.2 Интеграция протокола sip с ip-сетями
- •5.3 Адресация
- •5.4 Архитектура сети sip
- •5.4.1 Терминал
- •5.4.2 Прокси-сервер
- •5.4.3 Сервер переадресации
- •5.4.4 Сервер определения местоположения пользователей
- •5.4.5 Пример sip-сети
- •5.5 Соединение по sip
- •6.1 Принцип декомпозиции шлюза
- •6.2 Классификация шлюзов
- •6.3 Модель организации связи
- •6.4 Команды протокола mgcp
- •7. Качество обслуживания в сетях ip-телефонии
- •7.2 Трафик реального времени в ip-сетях
- •7.3 Дифференцированное обслуживание разнотипного трафика - Diff-Serv
- •7.4. Интегрированное обслуживание IntServ
- •7.6 Протокол резервирования ресурсов - rsvp
- •7.7 Технология mpls
- •7.8 Сравнение технологий IntServ, DiffServ, mpls
- •7.9 Обслуживание очередей
- •7.9.1 Алгоритмы организации очереди
- •7.9.2 Алгоритмы обработки очередей
- •Справедливые очереди базирующиеся на классах (cbwfq)
- •Очереди с малой задержкой (llq)
- •8. Информационная безопасность в ip-сетях
- •8.1. Типы угроз в сетях ip-телефонии
- •8.2. Методы криптографической защиты информации
- •8.3. Технологии аутентификации
- •8.3.1. Протокол ppp
- •8.3.2. Протокол tacacs
- •8.3.3. Протокол radius
- •8.4. Особенности системы безопасности в ip-телефонии
- •1. Телефонный аппарат.
- •2. Установление соединения.
- •3.Телефонный разговор.
- •4. Невидимый функционал.
- •5. Общение с внешним миром.
- •8.5. Обеспечение безопасности на базе протокола osp
- •8.6. Обеспечение безопасности ip-телефонии на базе vpn
- •9. Мобильность ip-телефонии
- •9.1. Разновидности мобильности
- •9.2. Идентификация терминала и пользователя
- •9.3. Сценарии мобильности в сетях ip-телефонии
- •9.4. Мобильность в сети ip-телефонии на базе протокола sip и h.323
- •10 Системы биллинга и менеджмента пользователейIp-телефонией.
- •10. 1 Особенности учета и биллинга ip - услуг
- •10.2. Требования к системе биллинга и менеджмента пользователей ip-телефонии
- •10.3. Обзор систем биллинга и менеджмента пользователей ip-телефонии
- •11. Внедрение ip-телефонии на базе продуктовой линейки d-Link. В качестве примера, рассмотрим реализацию ip-телефоной связи на базе наиболее экономически доступного оборудования.
- •11.1. Варианты построения ip-телефонных систем
- •11.2. Применение телефонных usb-адаптеров
- •11.3. Применение VоIp-шлюзов
- •11.4. Соединение офисов с помощью сети Интернет
- •Информационное представление речевого сигнала
- •Речевые кодеки для ip-телефонии
- •Архитектура шлюза
- •Для ознакомления с работой шлюза воспользуемся следующей схемой:
- •Сетевые протоколы
- •Реализация шлюзов для ip-телефонии
- •11.5. Видеотелефония
- •Построение транков в ip-телефонии
- •Варианты связи
- •Оборудование
- •Требования к каналу
- •23 Расширения протокола управления резервированием (rsvp-te) при обобщенной многопротокольной коммутации по меткам (gmpls)
7.2 Трафик реального времени в ip-сетях
Как правило, большую часть трафика в IP-сетях составляют потоки информации, чувствительной к задержкам. Максимальная задержка не должна превышать, как уже было сказано 250 мс, причем сюда входит и время обработки информации на конечной станции. Вариацию задержки (джиттер) также необходимо свести к минимуму. Кроме того, необходимо учитывать, что при сжатии информации, обмен которой должен происходить в реальном времени, она становится более чувствительной к ошибкам, возникающим при передаче, и их нельзя исправлять путем переспроса именно из-за необходимости передачи в реальном времени.
Общая задержка речевой информации делится на две основные части - задержка при кодировании и декодировании речи в шлюзах или терминальном оборудовании пользователей и задержка, вносимая самой сетью. Уменьшить общую задержку можно двумя путями: во-первых, спроектировать инфраструктуру сети таким образом, чтобы задержка в ней была минимальной, и, во-вторых, уменьшить время обработки речевой информации шлюзом.
Для уменьшения задержки в сети нужно сокращать количество транзитных маршрутизаторов и соединять их между собой высокоскоростными каналами. А для сглаживания вариации задержки можно использовать такие эффективные методы как, например, механизмы резервирования сетевых ресурсов.
Одним их способом избежать того, чтобы речь и другая информация, требующая передачи в режиме реального времени, не простаивала в очередях наравне со статической информацией (обычнее данные) является изоляция серверов и клиентов, работающих с графиком данного типа, и сегментация сети (можно разбить сеть на сегменты) .
7.3 Дифференцированное обслуживание разнотипного трафика - Diff-Serv
Технология DiffServ может использоваться в транзитной сети. Но в условиях однородного трафика, например только голосового, принцип применения приоритетов теряет смысл, и сеть начинает работать в режиме Best Effort20.
Опция DiffServ позволяет классифицировать пакеты из трафика, идущего в локальную сеть. Работа DiffServ основывается на идентификаторе DSCP (DiffServ code Point), представляющего собой первые 6 бит поля TOS21.DSCP определяет, как будут перенаправляться пакеты в DiffServ-сети (PHB, Per-hop Behavior22). Изменяя значение этого идентификатора, различные виды трафика можно распределить по приоритетам в очереди. Таким образом, можно распределять ресурсы согласно значениям DSCP и сконфигурированных правил.
Модель Diff-Serv описывает архитектуру сети как совокупность пограничных участков и ядра. Пример сети согласно модели Diff-Serv приведен на рисунке 7.1.

Рис. 7.1 Модель Diff-Serv.
Поступающий в сеть трафик классифицируется и нормализуется пограничными маршрутизаторами. Нормализация трафика предусматривает измерение его параметров, проверку соответствия заданным правилам предоставления услуг, профилирование (при этом пакеты, не укладывающиеся в рамки установленных правил, могут быть отсеяны) и другие операции. В ядре магистральные маршрутизаторы обрабатывают трафик в соответствии с классом PHB, код которого указан в поле DS.
Достоинства модели Diff-Serv:
обеспечивает единое понимание того, как должен обрабатываться трафик определенного класса;
позволяет разделить весь трафик на относительно небольшое число классов и не анализировать каждый информационный поток отдельно;
нет необходимости в организации предварительного соединения и в резервировании ресурсов;
не требуется высокая производительность сетевого оборудования.
К настоящему времени для Diff-Serv определено два класса трафика:
• класс срочной пересылки пакетов (Expedited Forwarding PHB Group);
• класс гарантированной пересылки пакетов (Assured Forwarding PHB Group).
Механизм обеспечения QoS на уровне сетевого устройства, применяемый в Diff-Serv, включает в себя четыре операции. Сначала пакеты классифицируются на основании их заголовков. Затем они маркируются в соответствии с произведенной классификацией (в поле приоритета Diff-Serv. В зависимости от маркировки выбирается алгоритм передачи (при необходимости - с выборочным удалением пакетов), позволяющий избежать заторов в сети. Заключительная операция, чаще всего, состоит в организации очередей с учетом приоритетов.
