
- •Введение в генетику человека
- •Этапы развития генетики:
- •Генетический аппарат клетки человека
- •Уровни организации генетического материала
- •Характеристика генома человека
- •Элементы ядерного генома
- •Классификация последовательностей ядерного генома человека
- •Динамика ядерного генетического материала
- •Компактизация генетического материала
- •Количество генетического материала
- •Активность генетического материала
- •Характеристика генов в зависимости от периода и места экспрессии
- •Изменение генетического материала
- •Хромосомы человека молекулярная организация хромосом
- •Общая характеристика хромосом
- •Морфология метафазных хромосом
- •Морфологическими элементами метафазной хромосомы являются:
- •Классификация хромосом человека
- •Изучение хромосом человека
- •Изучение метафазных хромосом
- •Этапы кариотипирования Дифференциальная окраска хромосом
- •Молекулярно-цитогенетические методы
- •Номенклатура хромосом человека
- •Символы, используемые для описания кариотипа
- •Вариации кариотипа в пределах нормального фенотипа
- •Хромосомный полиморфизм
- •Половой хроматин
- •Генетические последствия инактивации хромосомы
- •Молекулярные механизмы инактивации х-хромосомы
- •Половой хроматин X
- •Анализ полового хроматина X в клетках слизистой полости рта
- •Интерпретация теста Барра
- •Анализ полового хроматина X в мазках периферической крови
- •Практическое значение теста полового хроматина (показания и ограничения)
- •1. Показания:
- •2. Ограничения:
Генетические последствия инактивации хромосомы
1. Компенсация дозы Х-сцепленного гена. В результате инактивации одной их хромосом X у женщин общее количество конечных продуктов Х-сцепленных генов одинаково у обоих полов. Однако, процесс инактивации не всегда является полным и имеет ряд ограничений, что находит и экспериментальное подтверждение. Так, здоровые женщины с двумя хромосомами X (46,ХХ) и женщины с кариотипом 45,Х фенотипически отличаются. Различия наблюдаются и у мужчин с нормальным кариотипом (46,XY) и больными с синдромом Клайнфельтера (47,XXY). Отмечено, что чем больше в кариотипе дополнительных хромосом X, тем больше анормальных признаков в фенотипе носителя.
2. Разная экспрессия у гетерозиготных женщин. Гетерозиготные по Х-сцепленным генам женщины отличаются по фенотипическому проявлению, так как инактивация Х-хромосомы носит случайный характер и, как следствие, соотношение клеток с активным и неактивным аллелями гена варьирует от 0% до 100%. Если мутантный аллель активен в большинстве клеток организма, то гетерозиготные женщины проявляют серьезные фенотипические нарушения („неблагоприятная лайонизация"), например, в случае следующих болезней: дефицита фермента 6-фосфатдегидрогеназы, дальтонизма, гемофилии, мышечной дистрофии Дюшенна.
3. Мозаицизм. Нормальный женский организм представляет собой своеобразную "мозаику" по Х-сцепленным генам, имея две популяции соматических клеток, отличающихся по родительскому происхождению активной Х-хромосомы: одна с активной материнской Х-хромосомой и другая - с отцовской. Данное явление мозаицизма было обнаружено у женщин, гетерозиготных по:
- редкой форме Х-сцепленного альбинизма, когда у этих женщин были выявлены клетки с пигментом и непигментированные клетки;
- гену фермента 6-фосфатдегидрогеназы, имеющему две аллели, которые кодируют две разные формы данного фермента. У гетерозиготных женщин были выделены клетки кожи, которые выращивали в изолированной культуре. Было показано, что потомки одной клетки синтезируют только один тип фермента.
Молекулярные механизмы инактивации х-хромосомы
Выявлено, что Х-хромосома инактивируется не полностью, и в ней сохраняются генетически активные локусы. Объяснением этому может служить тот факт, что часть генов X-хромосомы имеет гомологичные гены на хромосоме Y и не требует компенсации дозы. К ним относятся гены из псевдоаутосомальной области (PAR), расположенной в сегменте Хр22- pter и имеющей размеры около 2Mb, и ряд других генов, например:
- ген STS, кодирующий стероид-сульфатазу;
- ген MIC-2, расположенный вблизи псевдоаутосомальной облачи,
- гены DXS, U23E, UBEI проксимального участка короткого плеча;
- ген RPS4X, контролирующий синтез рибосомного белка S4 и расположенный в проксимальной части длинного плеча.
Молекулярно-биологические исследования позволили выявить в хромосоме X участок - (ql3), который вовлечен в процесс инактивации и, поэтому назван центром инактивации хромосомы X ХIС). В этом участке расположен ген XIST, который был изучен и клонирован с использованием искусственной дрожжевой хромосомы YAC. Ген XIST имеет длину около 450 Кb. Конец 3´гена участвует в «подсчете» числа хромосом Х и определяет, какая именно хромосома Х останется активной. На 5´-конце гена расположен промотр с тремя областями:
- активирующей областью, длиной около 100pb;
- областью, состоящей из множества повторов одной и той же последовательности и обеспечивающей стабилизацию РНК- XIST на уровне неактивной хромосомы;
- областью, образованной повторами CG, расположенной на расстоянии 25Кb от транскрибируемой области гена и оказывающей ингибирующее действие на активирующую область промотора. Ген XIST относится к нетипичным генам, т.к. он утратил способность экспрессироваться в виде белка. Его экспрессия завершается синтезом мРНК, длиной около Kb, которая остается связанной с генетически неактивной хромосомой X.
Путем экспериментального трансгенеза было показано, что ген XIST, будучи встроенным в одну из аутосом, способен индуцировать процесс хромосомной инактивации с образованием гетерохроматина. Методом FISH обнаружено наличие на аутосоме, в которую был встроен данный ген, молекулы PHK-XIST, которая и вызывает инактивацию аутосомных генов. Кроме того, было выявлено, что аутосома со встроенным генов XIST гипоацетилирована на уровне гистона Н4 и имеет новый тип гистона - макроН2А1. Результаты других исследований позволяют предположить, что механизм инактивации зависит от стабильности молекулы PHK-XIST на неактивной хромосоме X. Стабильная и нестабильная формы РНК переписываются с участием разных промоторов одного и того же гена. Регуляцию экспрессии гена XIST можно объяснить на основе явления геномного импринтинга. Геномный импринтинг - это подавление активности одного из двух аллелей гена в зависимости от родительского происхождения, которое происходит в гаметогенезе и представляет один из механизмов регуляции фенотипической экспрессии генов.