Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Popov / Popov / гидравлика / лаба№4

.doc
Скачиваний:
26
Добавлен:
21.03.2015
Размер:
532.99 Кб
Скачать

ОПРЕДЕЛЕНИЕ ПОТЕРЬ НАПОРА НА ТРЕНИЕ ПО ДЛИНЕ

В ПРЯМЫХ ТРУБАХ ПОСТОЯННОГО СЕЧЕНИЯ

Цель работы и методика эксперимента

Цель работы заключается в том, чтобы при разных значениях расхода Q измерить потерю напора на трение по длине в прямой трубе постоянного диаметра, построить зависимость от Q , затем подсчитать значения коэффициента Дарси и числа Рейнольдса Re и построить экспериментальную и расчетную зависимости от Re .

1.Основные сведения

Так называемые гидравлические потери, т.е. потери полного напора или полной удельной механической энергии, обусловленные вязкостью жидкости, делятся на два вида: потери на трение по длине и местные потери.

Потери на трение по длине, рассматриваемые в данной работе, в чистом виде возникают в прямых трубах постоянного проходного сечения и обусловлены внутренним трением в жидкости. В этом случае скорость несжимаемой жидкости, как это следует из уравнения расхода, остается постоянной во всех сечениях потока вдоль трубы постоянного диаметра. Следовательно, уменьшение полной удельной энергии жидкости происходит за счет уменьшения гидростатического напора (удельной потенциальной энергии) вдоль потока.

Как показывают опыты потери на трение по длине hтр пропорциональны относительной длине трубы l/d и приблизительно пропорциональны квадрату средней скорости (при турбулентном режиме). Поэтому в гидравлике принято эти потери определять по формуле Дарси–Вейсбаха , которая имеет вид

(1)

где - безразмерный коэффициент пропорциональности, получивший название коэффициент сопротивления на трение по длине, или коэффициент Дарси.

При ламинарном режиме течения потеря напора на трение по длине трубы пропорциональна скорости (и расходу) в первой степени и определяется законом Пуазейля, который имеет вид:

(2)

Если же этот закон привести к виду формулы Дарси, то будем иметь

где (3)

Пользуясь формулой Дарси при ламинарном режиме, не следует забывать, что потеря напора в этом случае пропорциональна скорости в первой степени. Квадрат же скорости в формуле (3) получен умножением и делением выражения (2) на. Коэффициент при ламинарном режиме течения обратно пропорционален числу Рейнольдса, которое, в свою очередь, пропорционально скорости

При турбулентном режиме течения в первом грубом приближении коэффициент можно считать для данной трубы постоянным, а потерю напора - пропорциональной квадрату скорости.

Однако, при более точном подходе, выявляется некоторая зависимость от скорости течения , диаметра трубы d и вязкости жидкости , т.е. от основного критерия гидродинамического подобия - числа Рейнольдса Re = /v . Кроме того, на значение при определенных условиях течения влияет относительная шероховатость внутренней поверхности трубы, равная отношению средней высоты бугорков шероховатости Δ к диаметру трубы d .

Таким образом, в общем случае

Однако, влияние величин Re и на в различных по степени турбулизации потоках разное.

При турбулентном режиме течения различают следующие три области сопротивления:

-первая область - область гидравлически гладких труб - в ней коэффициент от шероховатости не зависит, а определяется лишь числом Рейнольдса.

В этой области при расчете может быть использована известная формула Блазиуса, которая имеет вид

(4)

Отсутствие влияния шероховатости на сопротивление в первой области сопротивления физически объясняется тем, что при турбулентном режиме течения жидкости в трубе у ее стенки имеет место тонкий ламинарный слой, в котором течение происходит с малой скоростью без перемешивания. В первой области сопротивления толщина этого слоя больше средней высоты бугорков шероховатости. Бугорки скрыты внутри ламинарного слоя, обтекание их жидкостью происходит безотрывно и поэтому шероховатость на сопротивление влияния не оказывает.

Подставив формулу Блазиуса (4) в формулу Дарси (1) с учетом выражения для числа Рейнольдса Re = /v, легко показать, что в первой области сопротивления потеря напора на трение пропорциональна скорости , а, следовательно, и расходу Q в степени 1,75.

-вторая область - характеризуется тем, что коэффициент зависит одновременно как от числа Рейнольдса Re , так и от относительной шероховатости.

Наиболее удобной в этом случае формулой, выражающей эту функциональную зависимость при турбулентном режиме течения, является формула Альтшуля, имеющая следующий вид:

(5)

Ламинарный слой у стенки трубы при этом имеет толщину, соизмеримую с высотой бугорков шероховатости, поэтому последние оказывают соответствующее влияние на сопротивление. Потеря напора в этой области пропорциональна скорости в степени m, причем показатель степени m находится в интервале от 1,75 до 2,0.

- третья область - область больших Re и , где коэффициент не зависит от числа Re , а определяется лишь относительной шероховатостью .

Формула, определяющая величину коэффициента при этом получается из формулы Альтшуля (5), принимая в ней Re ∞ .

Толщина ламинарного слоя в этой области сопротивления исчезающе мала и бугорки шероховатости обтекаются турбулентным потоком, вызывая появление в потоке дополнительных вихрей, а следовательно, и дополнительные потери энергии при движении жидкости.

2. Описание установки

Установка представляет собой замкнутый по водообороту контур, состоящий из следующих элементов:

  1. Водяной резервуар;

  2. Насос;

  3. Трубопровод (канал) круглого сечения;

  4. Расходомер флюгерного (чашечного) типа;

  5. Расходомерный вентиль;

  6. Пробковый выходной вентиль;

  7. Пьезометрический щит, на котором выведены все пьезометры.

Трубопровод выполнен из нержавеющей стали, и имеет 14 различных по длине и диаметру участков (диаметр малых участков 22 х 10-3 м, а в расширенных—72 х 10-3м) На концах каждого участка расположены выходы соответствующих пьезометров. Для данной работы следует учесть, что прямолинейный участок постоянного сечения имеет длину l1=1,2м и внутренний диаметр 0,047м.

. Обработка результатов.

Расход жидкости м3

Показания пьезометров

потери напора

Н1-2

среднюю скорость

значения критерия Rе

эксп.

расч

1

2

0,002

0,001

Обработка результатов эксперимента заключается в подсчете следующих величин:

  1. потери напора на трение по длине hтр =H12 или hтр = P1/(ρg) -Н2 .

  2. расход вычисляют по формуле:

  3. среднюю скорость потока

  4. значения критерия Rе: Re = /v

  5. экспериментальное значение коэффициента сопротивления на трение по длине -эксп. определяется из формулы Дарси–Вейсбаха (1)

  1. расчетное значения коэффициента Дарси - расч определяется в зависимости от режима течения если ReReкр или если Re>Reкр

Соседние файлы в папке гидравлика