- •1. Pin Configurations
- •1.1 Disclaimer
- •2. Overview
- •2.1 Block Diagram
- •2.2 Pin Descriptions
- •2.2.3 Port B (PB3...PB0)
- •2.2.4 RESET
- •2.2.5 Port A (PA7...PA0)
- •3. Resources
- •4. About Code Examples
- •5. CPU Core
- •5.1 Overview
- •5.2 Architectural Overview
- •5.4 Status Register
- •5.5 General Purpose Register File
- •5.6 Stack Pointer
- •5.7 Instruction Execution Timing
- •5.8 Reset and Interrupt Handling
- •5.8.1 Interrupt Response Time
- •6. Memories
- •6.2 SRAM Data Memory
- •6.2.1 Data Memory Access Times
- •6.3 EEPROM Data Memory
- •6.3.1 EEPROM Read/Write Access
- •6.3.2 Atomic Byte Programming
- •6.3.3 Split Byte Programming
- •6.3.4 Erase
- •6.3.5 Write
- •6.3.6 Preventing EEPROM Corruption
- •6.4 I/O Memory
- •6.4.1 General Purpose I/O Registers
- •6.5 Register Description
- •7. System Clock and Clock Options
- •7.1 Clock Systems and their Distribution
- •7.2 Clock Sources
- •7.3 Default Clock Source
- •7.4 Crystal Oscillator
- •7.6 Calibrated Internal RC Oscillator
- •7.7 External Clock
- •7.8 128 kHz Internal Oscillator
- •7.9 System Clock Prescaler
- •7.9.1 Switching Time
- •7.10 Register Description
- •8. Power Management and Sleep Modes
- •8.1 Sleep Modes
- •8.2 Idle Mode
- •8.3 ADC Noise Reduction Mode
- •8.5 Standby Mode
- •8.6 Power Reduction Register
- •8.7 Minimizing Power Consumption
- •8.7.1 Analog to Digital Converter
- •8.7.2 Analog Comparator
- •8.7.4 Internal Voltage Reference
- •8.7.5 Watchdog Timer
- •8.7.6 Port Pins
- •8.8 Register Description
- •9. System Control and Reset
- •9.0.1 Resetting the AVR
- •9.0.2 Reset Sources
- •9.0.3 Power-on Reset
- •9.0.4 External Reset
- •9.0.6 Watchdog Reset
- •9.1 Internal Voltage Reference
- •9.2 Watchdog Timer
- •9.3 Timed Sequences for Changing the Configuration of the Watchdog Timer
- •9.3.1 Safety Level 1
- •9.3.2 Safety Level 2
- •9.4 Register Description
- •10. Interrupts
- •10.1 Interrupt Vectors
- •11. External Interrupts
- •11.1 Pin Change Interrupt Timing
- •11.2 Register Description
- •12. I/O Ports
- •12.1 Overview
- •12.2 Ports as General Digital I/O
- •12.2.1 Configuring the Pin
- •12.2.2 Toggling the Pin
- •12.2.3 Switching Between Input and Output
- •12.2.4 Reading the Pin Value
- •12.2.5 Digital Input Enable and Sleep Modes
- •12.2.6 Unconnected Pins
- •12.3 Alternate Port Functions
- •12.3.1 Alternate Functions of Port A
- •12.3.2 Alternate Functions of Port B
- •12.4 Register Description
- •13. 8-bit Timer/Counter0 with PWM
- •13.1 Features
- •13.2 Overview
- •13.2.1 Registers
- •13.2.2 Definitions
- •13.3 Timer/Counter Clock Sources
- •13.4 Counter Unit
- •13.5 Output Compare Unit
- •13.5.1 Force Output Compare
- •13.5.2 Compare Match Blocking by TCNT0 Write
- •13.5.3 Using the Output Compare Unit
- •13.6 Compare Match Output Unit
- •13.6.1 Compare Output Mode and Waveform Generation
- •13.7 Modes of Operation
- •13.7.1 Normal Mode
- •13.7.2 Clear Timer on Compare Match (CTC) Mode
- •13.7.3 Fast PWM Mode
- •13.7.4 Phase Correct PWM Mode
- •13.8 Timer/Counter Timing Diagrams
- •13.9 Register Description
- •14. 16-bit Timer/Counter1
- •14.1 Features
- •14.2 Overview
- •14.2.1 Registers
- •14.2.2 Definitions
- •14.2.3 Compatibility
- •14.3.1 Reusing the Temporary High Byte Register
- •14.4 Timer/Counter Clock Sources
- •14.5 Counter Unit
- •14.6 Input Capture Unit
- •14.6.1 Input Capture Trigger Source
- •14.6.2 Noise Canceler
- •14.6.3 Using the Input Capture Unit
- •14.7 Output Compare Units
- •14.7.1 Force Output Compare
- •14.7.2 Compare Match Blocking by TCNT1 Write
- •14.7.3 Using the Output Compare Unit
- •14.8 Compare Match Output Unit
- •14.8.1 Compare Output Mode and Waveform Generation
- •14.9 Modes of Operation
- •14.9.1 Normal Mode
- •14.9.2 Clear Timer on Compare Match (CTC) Mode
- •14.9.3 Fast PWM Mode
- •14.9.4 Phase Correct PWM Mode
- •14.9.5 Phase and Frequency Correct PWM Mode
- •14.10 Timer/Counter Timing Diagrams
- •14.11 Register Description
- •15. Timer/Counter Prescaler
- •15.0.1 Prescaler Reset
- •15.0.2 External Clock Source
- •15.1 Register Description
- •16.1 Features
- •16.2 Overview
- •16.3 Functional Descriptions
- •16.3.2 SPI Master Operation Example
- •16.3.3 SPI Slave Operation Example
- •16.3.5 Start Condition Detector
- •16.3.6 Clock speed considerations
- •16.4 Alternative USI Usage
- •16.4.4 Edge Triggered External Interrupt
- •16.4.5 Software Interrupt
- •16.5 Register Descriptions
- •17. Analog Comparator
- •17.1 Analog Comparator Multiplexed Input
- •17.2 Register Description
- •18. Analog to Digital Converter
- •18.1 Features
- •18.2 Overview
- •18.3 ADC Operation
- •18.4 Starting a Conversion
- •18.5 Prescaling and Conversion Timing
- •18.6 Changing Channel or Reference Selection
- •18.6.1 ADC Input Channels
- •18.6.2 ADC Voltage Reference
- •18.7 ADC Noise Canceler
- •18.7.1 Analog Input Circuitry
- •18.7.2 Analog Noise Canceling Techniques
- •18.7.3 ADC Accuracy Definitions
- •18.8 ADC Conversion Result
- •18.8.1 Single Ended Conversion
- •18.8.2 Unipolar Differential Conversion
- •18.8.3 Bipolar Differential Conversion
- •18.9 Temperature Measurement
- •18.10 Register Description
- •18.10.3.1 ADLAR = 0
- •18.10.3.2 ADLAR = 1
- •19. debugWIRE On-chip Debug System
- •19.1 Features
- •19.2 Overview
- •19.3 Physical Interface
- •19.4 Software Break Points
- •19.5 Limitations of debugWIRE
- •19.6 Register Description
- •20. Self-Programming the Flash
- •20.0.1 Performing Page Erase by SPM
- •20.0.2 Filling the Temporary Buffer (Page Loading)
- •20.0.3 Performing a Page Write
- •20.1.1 EEPROM Write Prevents Writing to SPMCSR
- •20.1.2 Reading the Fuse and Lock Bits from Software
- •20.1.3 Preventing Flash Corruption
- •20.1.4 Programming Time for Flash when Using SPM
- •20.2 Register Description
- •21. Memory Programming
- •21.1 Program And Data Memory Lock Bits
- •21.2 Fuse Bytes
- •21.2.1 Latching of Fuses
- •21.3 Signature Bytes
- •21.4 Calibration Byte
- •21.5 Page Size
- •21.6 Serial Downloading
- •21.6.1 Serial Programming Algorithm
- •21.6.2 Serial Programming Instruction set
- •21.7 High-voltage Serial Programming
- •21.8.2 Considerations for Efficient Programming
- •21.8.3 Chip Erase
- •21.8.4 Programming the Flash
- •21.8.5 Programming the EEPROM
- •21.8.6 Reading the Flash
- •21.8.7 Reading the EEPROM
- •21.8.8 Programming and Reading the Fuse and Lock Bits
- •21.8.9 Reading the Signature Bytes and Calibration Byte
- •22. Electrical Characteristics
- •22.1 Absolute Maximum Ratings*
- •22.2 Speed Grades
- •22.3 Clock Characterizations
- •22.3.1 Calibrated Internal RC Oscillator Accuracy
- •22.3.2 External Clock Drive Waveforms
- •22.3.3 External Clock Drive
- •22.4 System and Reset Characterizations
- •22.6 Serial Programming Characteristics
- •22.7 High-voltage Serial Programming Characteristics
- •23.1 Active Supply Current
- •23.2 Idle Supply Current
- •23.3 Supply Current of IO modules
- •23.3.0.1 Example 1
- •23.5 Standby Supply Current
- •23.7 Pin Driver Strength
- •23.8 Pin Threshold and Hysteresis
- •23.9 BOD Threshold and Analog Comparator Offset
- •23.10 Internal Oscillator Speed
- •23.11 Current Consumption of Peripheral Units
- •23.12 Current Consumption in Reset and Reset Pulsewidth
- •24. Register Summary
- •25. Instruction Set Summary
- •26. Ordering Information
- •26.1 ATtiny24
- •26.2 ATtiny44
- •26.3 ATtiny84
- •27. Packaging Information
- •28. Errata
- •28.1 ATtiny24
- •28.2 ATtiny44
- •28.3 ATtiny84
- •29. Datasheet Revision History
Signal description (internal signals):
count |
Increment or decrement TCNT0 by 1. |
direction |
Select between increment and decrement. |
clear |
Clear TCNT0 (set all bits to zero). |
clkTn |
Timer/Counter clock, referred to as clkT0 in the following. |
top |
Signalize that TCNT0 has reached maximum value. |
bottom |
Signalize that TCNT0 has reached minimum value (zero). |
Depending of the mode of operation used, the counter is cleared, incremented, or decremented at each timer clock (clkT0). clkT0 can be generated from an external or internal clock source, selected by the Clock Select bits (CS02:0). When no clock source is selected (CS02:0 = 0) the timer is stopped. However, the TCNT0 value can be accessed by the CPU, regardless of whether clkT0 is present or not. A CPU write overrides (has priority over) all counter clear or count operations.
The counting sequence is determined by the setting of the WGM01 and WGM00 bits located in the Timer/Counter Control Register (TCCR0A) and the WGM02 bit located in the Timer/Counter Control Register B (TCCR0B). There are close connections between how the counter behaves (counts) and how waveforms are generated on the Output Compare output OC0A. For more details about advanced counting sequences and waveform generation, see ”Modes of Operation” on page 79.
The Timer/Counter Overflow Flag (TOV0) is set according to the mode of operation selected by the WGM01:0 bits. TOV0 can be used for generating a CPU interrupt.
13.5Output Compare Unit
The 8-bit comparator continuously compares TCNT0 with the Output Compare Registers (OCR0A and OCR0B). Whenever TCNT0 equals OCR0A or OCR0B, the comparator signals a match. A match will set the Output Compare Flag (OCF0A or OCF0B) at the next timer clock cycle. If the corresponding interrupt is enabled, the Output Compare Flag generates an Output Compare interrupt. The Output Compare Flag is automatically cleared when the interrupt is executed. Alternatively, the flag can be cleared by software by writing a logical one to its I/O bit location. The Waveform Generator uses the match signal to generate an output according to operating mode set by the WGM02:0 bits and Compare Output mode (COM0x1:0) bits. The max and bottom signals are used by the Waveform Generator for handling the special cases of the extreme values in some modes of operation. See ”Modes of Operation” on page 79.
Figure 13-3 on page 77 shows a block diagram of the Output Compare unit.
76 ATtiny24/44/84 
8006E–AVR–09/06
ATtiny24/44/84
Figure 13-3. Output Compare Unit, Block Diagram
DATA BUS
|
OCRnx |
|
|
|
|
|
TCNTn |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
= (8-bit Comparator ) |
|
|
|
|
|||
|
|
|
|
|
|
|
OCFnx (Int.Req.) |
|||
top |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
||
bottom |
|
|
Waveform Generator |
|
|
|
|
|||
|
|
|
OCnx |
|
||||||
FOCn |
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
WGMn1:0 COMnX1:0
The OCR0x Registers are double buffered when using any of the Pulse Width Modulation (PWM) modes. For the normal and Clear Timer on Compare (CTC) modes of operation, the double buffering is disabled. The double buffering synchronizes the update of the OCR0x Compare Registers to either top or bottom of the counting sequence. The synchronization prevents the occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free.
The OCR0x Register access may seem complex, but this is not case. When the double buffering is enabled, the CPU has access to the OCR0x Buffer Register, and if double buffering is disabled the CPU will access the OCR0x directly.
13.5.1Force Output Compare
In non-PWM waveform generation modes, the match output of the comparator can be forced by writing a one to the Force Output Compare (0x) bit. Forcing Compare Match will not set the OCF0x Flag or reload/clear the timer, but the OC0x pin will be updated as if a real Compare Match had occurred (the COM0x1:0 bits settings define whether the OC0x pin is set, cleared or toggled).
13.5.2Compare Match Blocking by TCNT0 Write
All CPU write operations to the TCNT0 Register will block any Compare Match that occur in the next timer clock cycle, even when the timer is stopped. This feature allows OCR0x to be initialized to the same value as TCNT0 without triggering an interrupt when the Timer/Counter clock is enabled.
13.5.3Using the Output Compare Unit
Since writing TCNT0 in any mode of operation will block all Compare Matches for one timer clock cycle, there are risks involved when changing TCNT0 when using the Output Compare Unit, independently of whether the Timer/Counter is running or not. If the value written to TCNT0 equals the OCR0x value, the Compare Match will be missed, resulting in incorrect waveform
77
8006E–AVR–09/06
