
- •Features
- •1. Pin Configurations
- •1.1 Disclaimer
- •2. Overview
- •2.1 Block Diagram
- •2.2 Pin Descriptions
- •2.2.3 AVCC
- •2.2.4 AGND
- •2.2.5 Port A (PA7..PA0)
- •2.2.6 Port B (PB7..PB0)
- •2.2.7 RESET
- •3. Resources
- •4. About Code Examples
- •5. AVR CPU Core
- •5.1 Overview
- •5.3 Status Register
- •5.4 General Purpose Register File
- •5.5 Stack Pointer
- •5.6 Instruction Execution Timing
- •5.7 Reset and Interrupt Handling
- •5.7.1 Interrupt Response Time
- •6. AVR Memories
- •6.2 SRAM Data Memory
- •6.2.1 Data Memory Access Times
- •6.3 EEPROM Data Memory
- •6.3.1 EEPROM Read/Write Access
- •6.3.2 Atomic Byte Programming
- •6.3.3 Split Byte Programming
- •6.3.4 Erase
- •6.3.5 Write
- •6.3.6 Preventing EEPROM Corruption
- •6.4 I/O Memory
- •6.4.1 General Purpose I/O Registers
- •6.5 Register Description
- •7. System Clock and Clock Options
- •7.1 Clock Systems and their Distribution
- •7.2 Clock Sources
- •7.3 Default Clock Source
- •7.4 External Clock
- •7.6 Calibrated Internal RC Oscillator
- •7.7 128 kHz Internal Oscillator
- •7.9 Crystal Oscillator
- •7.10 Clock Output Buffer
- •7.11 System Clock Prescaler
- •7.11.1 Switching Time
- •7.12 Register Description
- •8. Power Management and Sleep Modes
- •8.1 Sleep Modes
- •8.2 Idle Mode
- •8.3 ADC Noise Reduction Mode
- •8.5 Standby Mode
- •8.6 Power Reduction Register
- •8.7 Minimizing Power Consumption
- •8.7.1 Analog to Digital Converter
- •8.7.2 Analog Comparator
- •8.7.4 Internal Voltage Reference
- •8.7.5 Watchdog Timer
- •8.7.6 Port Pins
- •8.8 Register Description
- •9. System Control and Reset
- •9.0.1 Resetting the AVR
- •9.0.2 Reset Sources
- •9.0.4 External Reset
- •9.0.6 Watchdog Reset
- •9.1 Internal Voltage Reference
- •9.2 Watchdog Timer
- •9.3 Timed Sequences for Changing the Configuration of the Watchdog Timer
- •9.3.1 Safety Level 1
- •9.3.2 Safety Level 2
- •9.4 Register Description
- •10. Interrupts
- •10.1 Interrupt Vectors in ATtiny261/461/861
- •11. External Interrupts
- •11.1 Register Description
- •12. I/O Ports
- •12.1 Overview
- •12.2 Ports as General Digital I/O
- •12.2.1 Configuring the Pin
- •12.2.2 Toggling the Pin
- •12.2.3 Switching Between Input and Output
- •12.2.4 Reading the Pin Value
- •12.2.5 Digital Input Enable and Sleep Modes
- •12.2.6 Unconnected Pins
- •12.3 Alternate Port Functions
- •12.3.1 Alternate Functions of Port B
- •12.3.2 Alternate Functions of Port A
- •12.4 Register Description
- •13. Timer/Counter0 Prescaler
- •13.0.1 Prescaler Reset
- •13.0.2 External Clock Source
- •13.1 Register Description
- •14. Timer/Counter0
- •14.1 Features
- •14.2 Overview
- •14.2.1 Registers
- •14.2.2 Definitions
- •14.3 Timer/Counter Clock Sources
- •14.4 Counter Unit
- •14.5 Modes of Operation
- •14.5.1 Normal 8-bit Mode
- •14.6 Input Capture Unit
- •14.6.1 Input Capture Trigger Source
- •14.6.2 Noise Canceler
- •14.6.3 Using the Input Capture Unit
- •14.7 Output Compare Unit
- •14.7.1 Compare Match Blocking by TCNT0 Write
- •14.7.2 Using the Output Compare Unit
- •14.8 Timer/Counter Timing Diagrams
- •14.9.1 Reusing the temporary high byte register
- •14.10 Register Description
- •15. Timer/Counter1 Prescaler
- •15.0.1 Prescaler Reset
- •15.0.2 Prescaler Initialization for Asynchronous Mode
- •15.1 Register Description
- •16. Timer/Counter1
- •16.1 Features
- •16.2 Overview
- •16.2.1 Speed
- •16.2.2 Accuracy
- •16.2.3 Registers
- •16.2.4 Synchronization
- •16.2.5 Definitions
- •16.3 Counter Unit
- •16.3.1 Counter Initialization for Asynchronous Mode
- •16.4 Output Compare Unit
- •16.4.1 Force Output Compare
- •16.4.2 Compare Match Blocking by TCNT1 Write
- •16.4.3 Using the Output Compare Unit
- •16.5 Dead Time Generator
- •16.6 Compare Match Output Unit
- •16.6.1 Compare Output Mode and Waveform Generation
- •16.7 Modes of Operation
- •16.7.1 Normal Mode
- •16.7.3 Phase and Frequency Correct PWM Mode
- •16.7.4 PWM6 Mode
- •16.8 Timer/Counter Timing Diagrams
- •16.9 Fault Protection Unit
- •16.9.1 Fault Protection Trigger Source
- •16.9.2 Noise Canceler
- •16.10 Accessing 10-Bit Registers
- •16.10.1 Reusing the temporary high byte register
- •16.11 Register Description
- •17.1 Features
- •17.2 Overview
- •17.3 Functional Descriptions
- •17.3.2 SPI Master Operation Example
- •17.3.3 SPI Slave Operation Example
- •17.3.5 Start Condition Detector
- •17.4 Alternative USI Usage
- •17.4.4 Edge Triggered External Interrupt
- •17.4.5 Software Interrupt
- •17.5 Register Descriptions
- •18.1 Register Description
- •18.2 Analog Comparator Multiplexed Input
- •19.1 Features
- •19.2 Overview
- •19.3 Operation
- •19.4 Starting a Conversion
- •19.5 Prescaling and Conversion Timing
- •19.6 Changing Channel or Reference Selection
- •19.6.1 ADC Input Channels
- •19.6.2 ADC Voltage Reference
- •19.7 ADC Noise Canceler
- •19.7.1 Analog Input Circuitry
- •19.7.2 Analog Noise Canceling Techniques
- •19.7.3 ADC Accuracy Definitions
- •19.8 ADC Conversion Result
- •19.8.1 Single Ended Conversion
- •19.8.2 Unipolar Differential Conversion
- •19.8.3 Bipolar Differential Conversion
- •19.9 Temperature Measurement
- •19.10 Register Descriptin
- •19.10.3.1 ADLAR = 0
- •19.10.3.2 ADLAR = 1
- •20. debugWIRE On-chip Debug System
- •20.1 Features
- •20.2 Overview
- •20.3 Physical Interface
- •20.4 Software Break Points
- •20.5 Limitations of debugWIRE
- •20.6 Register Description
- •21. Self-Programming the Flash
- •21.0.1 Performing Page Erase by SPM
- •21.0.2 Filling the Temporary Buffer (Page Loading)
- •21.0.3 Performing a Page Write
- •21.1.1 EEPROM Write Prevents Writing to SPMCSR
- •21.1.2 Reading the Fuse and Lock Bits from Software
- •21.1.3 Preventing Flash Corruption
- •21.1.4 Programming Time for Flash when Using SPM
- •21.2 Register Description
- •22. Memory Programming
- •22.1 Program And Data Memory Lock Bits
- •22.2 Fuse Bytes
- •22.2.1 Latching of Fuses
- •22.3 Signature Bytes
- •22.4 Calibration Byte
- •22.5 Page Size
- •22.6 Parallel Programming Parameters, Pin Mapping, and Commands
- •22.6.1 Signal Names
- •22.7 Parallel Programming
- •22.7.1 Enter Programming Mode
- •22.7.2 Considerations for Efficient Programming
- •22.7.3 Chip Erase
- •22.7.4 Programming the Flash
- •22.7.5 Programming the EEPROM
- •22.7.6 Reading the Flash
- •22.7.7 Reading the EEPROM
- •22.7.8 Programming the Fuse Low Bits
- •22.7.9 Programming the Fuse High Bits
- •22.7.10 Programming the Extended Fuse Bits
- •22.7.11 Programming the Lock Bits
- •22.7.12 Reading the Fuse and Lock Bits
- •22.7.13 Reading the Signature Bytes
- •22.7.14 Reading the Calibration Byte
- •22.8 Serial Downloading
- •22.8.1 Serial Programming Algorithm
- •22.8.2 Serial Programming Instruction set
- •23. Electrical Characteristics
- •23.1 Absolute Maximum Ratings*
- •23.2 DC Characteristics
- •23.3 Speed Grades
- •23.4 Clock Characteristics
- •23.4.1 Calibrated Internal RC Oscillator Accuracy
- •23.4.2 External Clock Drive Waveforms
- •23.4.3 External Clock Drive
- •23.5 System and Reset Characteristics
- •23.7 Parallel Programming Characteristics
- •23.8 Serial Programming Characteristics
- •24. Typical Characteristics
- •24.1 Active Supply Current
- •24.2 Idle Supply Current
- •24.3 Supply Current of I/O modules
- •Example
- •24.6 Pin Driver Strength
- •24.7 Pin Threshold and Hysteresis
- •24.8 BOD Threshold and Analog Comparator Offset
- •24.9 Internal Oscillator Speed
- •24.10 Current Consumption of Peripheral Units
- •24.11 Current Consumption in Reset and Reset Pulsewidth
- •25. Register Summary
- •26. Instruction Set Summary
- •27. Ordering Information
- •27.1 ATtiny261
- •27.2 ATtiny461
- •27.3 ATtiny861
- •28. Packaging Information
- •29. Errata
- •29.1 Errata ATtiny261
- •29.2 Errata ATtiny461
- •29.3 Errata ATtiny861
- •30. Datasheet Revision History
- •Table of Contents

Figure 16-15. Timer/Counter Timing Diagram, with Prescaler (fclkT1/8)
clkPCK
clkTn
(clkPCK /8)
TCNTn |
|
|
TOP - 1 |
|
TOP |
|
BOTTOM |
|
|
BOTTOM + 1 |
|
|
|
|
|
|
|
|
|
|
|
TOVn
Figure 16-16. Timer/Counter Timing Diagram, Setting of OCF1x, with Prescaler (fclkT1/8)
clkPCK |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
clkTn |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(clkPCK /8) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||
TCNTn |
|
|
|
|
|
|
|
|
OCRnx - 1 |
|
|
|
|
|
|
|
|
|
|
OCRnx |
|
|
|
|
|
|
|
|
OCRnx + 1 |
|
|
|
|
|
|
|
|
OCRnx + 2 |
|
|
||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
OCRnx |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
OCRnx Value |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
OCFnx |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Figure 16-17. Timer/Counter Timing Diagram, with Prescaler (fclkT1/8)
clkPCK
clkTn
(clkPCK /8)
TCNTn |
BOTTOM + 1 |
BOTTOM + 1 |
BOTTOM |
BOTTOM + 1 |
|
TOVn
16.9Fault Protection Unit
The Timer/Counter1 incorporates a Fault Protection unit that can disable the PWM output pins, if an external event is triggered. The external signal indicating an event can be applied via the external interrupt INT0 pin or alternatively, via the analog-comparator unit. The Fault Protection unit is illustrated by the block diagram shown in Figure 16-18. The elements of the block diagram that are not directly a part of the Fault Protection unit are gray shaded.
Figure 16-18. Fault Protection Unit Block Diagram
|
|
|
|
|
ACO* |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
FAULT_PROTECTION (Int. Req.) |
||
|
|
|
|
|
|
|
FPAC1 |
|
FPNC1 |
|
|
FPES1 FPEN1 |
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Analog |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
Comparator |
|
|
|
|
|
|
Noise |
|
|
|
Edge |
|
|
|
Timer/Counter1 |
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
INT0 |
|
|
|
|
|
|
|
|
|
|
|
Canceler |
|
|
Detector |
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 ATtiny261/461/861
2588B–AVR–11/06

ATtiny261/461/861
When the Fault Protection mode is enabled by the Fault Protection Enable (FPEN1) bit and a change of the logic level (an event) occurs on the external interrupt pin (INT0), alternatively on the Analog Comparator output (ACO), and this change confirms to the setting of the edge detector, a Fault Protection mode will be triggered. When a Fault Protection is triggered, the COM1x bits are cleared, Output Comparators are disconnected from the PWM output pins and the PORTB register bits are connected on the PWM output pins. The Fault Protection Enable (FPEN1) is automatically cleared at the same system clock as the COM1nx bits are cleared. If the Fault Protection Interrupt Enable bit (FPIE1) is set, a Fault Protection interrupt is generated and the FPEN1 bit is cleared. Alternatively the FPEN1 bit can be polled by software to figure out when the Timer/Counter has entered to Fault Protection mode.
16.9.1Fault Protection Trigger Source
The main trigger source for the Fault Protection unit is the external interrupt pin (INT0). Alternatively the Analog Comparator output can be used as trigger source for the Fault Protection unit. The Analog Comparator is selected as trigger source by setting the Fault Protection Analog Comparator (FPAC1) bit in the Timer/Counter1 Control Register (TCCR1D). Be aware that changing trigger source can trigger a Fault Protection mode. Therefore it is recommended to clear the FPF1 flag after changing trigger source, setting edge detector or enabling the Fault Protection.
Both the external interrupt pin (INT0) and the Analog Comparator output (ACO) inputs are sampled using the same technique as for the T0 pin (Figure 13-1 on page 69). The edge detector is also identical. However, when the noise canceler is enabled, additional logic is inserted before the edge detector, which increases the delay by four system clock cycles. An Input Capture can also be triggered by software by controlling the port of the INT0 pin.
16.9.2Noise Canceler
The noise canceler improves noise immunity by using a simple digital filtering scheme. The noise canceler input is monitored over four samples, and all four must be equal for changing the output that in turn is used by the edge detector.
The noise canceler is enabled by setting the Fault Protection Noise Canceler (FPNC1) bit in Timer/Counter1 Control Register D (TCCR1D). When enabled the noise canceler introduces additional four system clock cycles of delay from a change applied to the input. The noise canceler uses the system clock and is therefore not affected by the prescaler.
109
2588B–AVR–11/06