
- •Features
- •1. Pin Configurations
- •1.1 Disclaimer
- •2. Overview
- •2.1 Block Diagram
- •2.2 Pin Descriptions
- •2.2.3 AVCC
- •2.2.4 AGND
- •2.2.5 Port A (PA7..PA0)
- •2.2.6 Port B (PB7..PB0)
- •2.2.7 RESET
- •3. Resources
- •4. About Code Examples
- •5. AVR CPU Core
- •5.1 Overview
- •5.3 Status Register
- •5.4 General Purpose Register File
- •5.5 Stack Pointer
- •5.6 Instruction Execution Timing
- •5.7 Reset and Interrupt Handling
- •5.7.1 Interrupt Response Time
- •6. AVR Memories
- •6.2 SRAM Data Memory
- •6.2.1 Data Memory Access Times
- •6.3 EEPROM Data Memory
- •6.3.1 EEPROM Read/Write Access
- •6.3.2 Atomic Byte Programming
- •6.3.3 Split Byte Programming
- •6.3.4 Erase
- •6.3.5 Write
- •6.3.6 Preventing EEPROM Corruption
- •6.4 I/O Memory
- •6.4.1 General Purpose I/O Registers
- •6.5 Register Description
- •7. System Clock and Clock Options
- •7.1 Clock Systems and their Distribution
- •7.2 Clock Sources
- •7.3 Default Clock Source
- •7.4 External Clock
- •7.6 Calibrated Internal RC Oscillator
- •7.7 128 kHz Internal Oscillator
- •7.9 Crystal Oscillator
- •7.10 Clock Output Buffer
- •7.11 System Clock Prescaler
- •7.11.1 Switching Time
- •7.12 Register Description
- •8. Power Management and Sleep Modes
- •8.1 Sleep Modes
- •8.2 Idle Mode
- •8.3 ADC Noise Reduction Mode
- •8.5 Standby Mode
- •8.6 Power Reduction Register
- •8.7 Minimizing Power Consumption
- •8.7.1 Analog to Digital Converter
- •8.7.2 Analog Comparator
- •8.7.4 Internal Voltage Reference
- •8.7.5 Watchdog Timer
- •8.7.6 Port Pins
- •8.8 Register Description
- •9. System Control and Reset
- •9.0.1 Resetting the AVR
- •9.0.2 Reset Sources
- •9.0.4 External Reset
- •9.0.6 Watchdog Reset
- •9.1 Internal Voltage Reference
- •9.2 Watchdog Timer
- •9.3 Timed Sequences for Changing the Configuration of the Watchdog Timer
- •9.3.1 Safety Level 1
- •9.3.2 Safety Level 2
- •9.4 Register Description
- •10. Interrupts
- •10.1 Interrupt Vectors in ATtiny261/461/861
- •11. External Interrupts
- •11.1 Register Description
- •12. I/O Ports
- •12.1 Overview
- •12.2 Ports as General Digital I/O
- •12.2.1 Configuring the Pin
- •12.2.2 Toggling the Pin
- •12.2.3 Switching Between Input and Output
- •12.2.4 Reading the Pin Value
- •12.2.5 Digital Input Enable and Sleep Modes
- •12.2.6 Unconnected Pins
- •12.3 Alternate Port Functions
- •12.3.1 Alternate Functions of Port B
- •12.3.2 Alternate Functions of Port A
- •12.4 Register Description
- •13. Timer/Counter0 Prescaler
- •13.0.1 Prescaler Reset
- •13.0.2 External Clock Source
- •13.1 Register Description
- •14. Timer/Counter0
- •14.1 Features
- •14.2 Overview
- •14.2.1 Registers
- •14.2.2 Definitions
- •14.3 Timer/Counter Clock Sources
- •14.4 Counter Unit
- •14.5 Modes of Operation
- •14.5.1 Normal 8-bit Mode
- •14.6 Input Capture Unit
- •14.6.1 Input Capture Trigger Source
- •14.6.2 Noise Canceler
- •14.6.3 Using the Input Capture Unit
- •14.7 Output Compare Unit
- •14.7.1 Compare Match Blocking by TCNT0 Write
- •14.7.2 Using the Output Compare Unit
- •14.8 Timer/Counter Timing Diagrams
- •14.9.1 Reusing the temporary high byte register
- •14.10 Register Description
- •15. Timer/Counter1 Prescaler
- •15.0.1 Prescaler Reset
- •15.0.2 Prescaler Initialization for Asynchronous Mode
- •15.1 Register Description
- •16. Timer/Counter1
- •16.1 Features
- •16.2 Overview
- •16.2.1 Speed
- •16.2.2 Accuracy
- •16.2.3 Registers
- •16.2.4 Synchronization
- •16.2.5 Definitions
- •16.3 Counter Unit
- •16.3.1 Counter Initialization for Asynchronous Mode
- •16.4 Output Compare Unit
- •16.4.1 Force Output Compare
- •16.4.2 Compare Match Blocking by TCNT1 Write
- •16.4.3 Using the Output Compare Unit
- •16.5 Dead Time Generator
- •16.6 Compare Match Output Unit
- •16.6.1 Compare Output Mode and Waveform Generation
- •16.7 Modes of Operation
- •16.7.1 Normal Mode
- •16.7.3 Phase and Frequency Correct PWM Mode
- •16.7.4 PWM6 Mode
- •16.8 Timer/Counter Timing Diagrams
- •16.9 Fault Protection Unit
- •16.9.1 Fault Protection Trigger Source
- •16.9.2 Noise Canceler
- •16.10 Accessing 10-Bit Registers
- •16.10.1 Reusing the temporary high byte register
- •16.11 Register Description
- •17.1 Features
- •17.2 Overview
- •17.3 Functional Descriptions
- •17.3.2 SPI Master Operation Example
- •17.3.3 SPI Slave Operation Example
- •17.3.5 Start Condition Detector
- •17.4 Alternative USI Usage
- •17.4.4 Edge Triggered External Interrupt
- •17.4.5 Software Interrupt
- •17.5 Register Descriptions
- •18.1 Register Description
- •18.2 Analog Comparator Multiplexed Input
- •19.1 Features
- •19.2 Overview
- •19.3 Operation
- •19.4 Starting a Conversion
- •19.5 Prescaling and Conversion Timing
- •19.6 Changing Channel or Reference Selection
- •19.6.1 ADC Input Channels
- •19.6.2 ADC Voltage Reference
- •19.7 ADC Noise Canceler
- •19.7.1 Analog Input Circuitry
- •19.7.2 Analog Noise Canceling Techniques
- •19.7.3 ADC Accuracy Definitions
- •19.8 ADC Conversion Result
- •19.8.1 Single Ended Conversion
- •19.8.2 Unipolar Differential Conversion
- •19.8.3 Bipolar Differential Conversion
- •19.9 Temperature Measurement
- •19.10 Register Descriptin
- •19.10.3.1 ADLAR = 0
- •19.10.3.2 ADLAR = 1
- •20. debugWIRE On-chip Debug System
- •20.1 Features
- •20.2 Overview
- •20.3 Physical Interface
- •20.4 Software Break Points
- •20.5 Limitations of debugWIRE
- •20.6 Register Description
- •21. Self-Programming the Flash
- •21.0.1 Performing Page Erase by SPM
- •21.0.2 Filling the Temporary Buffer (Page Loading)
- •21.0.3 Performing a Page Write
- •21.1.1 EEPROM Write Prevents Writing to SPMCSR
- •21.1.2 Reading the Fuse and Lock Bits from Software
- •21.1.3 Preventing Flash Corruption
- •21.1.4 Programming Time for Flash when Using SPM
- •21.2 Register Description
- •22. Memory Programming
- •22.1 Program And Data Memory Lock Bits
- •22.2 Fuse Bytes
- •22.2.1 Latching of Fuses
- •22.3 Signature Bytes
- •22.4 Calibration Byte
- •22.5 Page Size
- •22.6 Parallel Programming Parameters, Pin Mapping, and Commands
- •22.6.1 Signal Names
- •22.7 Parallel Programming
- •22.7.1 Enter Programming Mode
- •22.7.2 Considerations for Efficient Programming
- •22.7.3 Chip Erase
- •22.7.4 Programming the Flash
- •22.7.5 Programming the EEPROM
- •22.7.6 Reading the Flash
- •22.7.7 Reading the EEPROM
- •22.7.8 Programming the Fuse Low Bits
- •22.7.9 Programming the Fuse High Bits
- •22.7.10 Programming the Extended Fuse Bits
- •22.7.11 Programming the Lock Bits
- •22.7.12 Reading the Fuse and Lock Bits
- •22.7.13 Reading the Signature Bytes
- •22.7.14 Reading the Calibration Byte
- •22.8 Serial Downloading
- •22.8.1 Serial Programming Algorithm
- •22.8.2 Serial Programming Instruction set
- •23. Electrical Characteristics
- •23.1 Absolute Maximum Ratings*
- •23.2 DC Characteristics
- •23.3 Speed Grades
- •23.4 Clock Characteristics
- •23.4.1 Calibrated Internal RC Oscillator Accuracy
- •23.4.2 External Clock Drive Waveforms
- •23.4.3 External Clock Drive
- •23.5 System and Reset Characteristics
- •23.7 Parallel Programming Characteristics
- •23.8 Serial Programming Characteristics
- •24. Typical Characteristics
- •24.1 Active Supply Current
- •24.2 Idle Supply Current
- •24.3 Supply Current of I/O modules
- •Example
- •24.6 Pin Driver Strength
- •24.7 Pin Threshold and Hysteresis
- •24.8 BOD Threshold and Analog Comparator Offset
- •24.9 Internal Oscillator Speed
- •24.10 Current Consumption of Peripheral Units
- •24.11 Current Consumption in Reset and Reset Pulsewidth
- •25. Register Summary
- •26. Instruction Set Summary
- •27. Ordering Information
- •27.1 ATtiny261
- •27.2 ATtiny461
- •27.3 ATtiny861
- •28. Packaging Information
- •29. Errata
- •29.1 Errata ATtiny261
- •29.2 Errata ATtiny461
- •29.3 Errata ATtiny861
- •30. Datasheet Revision History
- •Table of Contents

ATtiny261/461/861
13. Timer/Counter0 Prescaler
The Timer/Counter can be clocked directly by the system clock (by setting the CSn2:0 = 1). This provides the fastest operation, with a maximum Timer/Counter clock frequency equal to system clock frequency (fCLK_I/O). Alternatively, one of four taps from the prescaler can be used as a
clock source. The prescaled clock has a frequency of either fCLK_I/O/8, fCLK_I/O/64, fCLK_I/O/256, or fCLK_I/O/1024. See Table 13-1 on page 71 for details.
13.0.1Prescaler Reset
The prescaler is free running, i.e., operates independently of the Clock Select logic of the Timer/Counter. Since the prescaler is not affected by the Timer/Counter’s clock select, the state of the prescaler will have implications for situations where a prescaled clock is used. One example of prescaling artifacts occurs when the timer is enabled and clocked by the prescaler (6 > CSn2:0 > 1). The number of system clock cycles from when the timer is enabled to the first count occurs can be from 1 to N+1 system clock cycles, where N equals the prescaler divisor (8, 64, 256, or 1024). It is possible to use the Prescaler Reset for synchronizing the Timer/Counter to program execution.
13.0.2External Clock Source
An external clock source applied to the T0 pin can be used as Timer/Counter clock (clkT0). The T0 pin is sampled once every system clock cycle by the pin synchronization logic. The synchronized (sampled) signal is then passed through the edge detector. Figure 13-1 shows a functional equivalent block diagram of the T0 synchronization and edge detector logic. The registers are clocked at the positive edge of the internal system clock (clkI/O). The latch is transparent in the high period of the internal system clock.
The edge detector generates one clkT0 pulse for each positive (CSn2:0 = 7) or negative (CSn2:0 = 6) edge it detects. See Table 13-1 on page 71 for details.
Figure 13-1. T0 Pin Sampling |
|
|
|
|
|||
Tn |
D |
Q |
D |
Q |
D |
Q |
Tn_sync |
|
|
|
|
|
|
|
(To Clock |
|
|
|
|
|
|
|
Select Logic) |
|
LE |
|
|
|
|
|
|
clkI/O |
|
|
|
|
|
|
|
|
|
|
Synchronization |
|
|
Edge Detector |
The synchronization and edge detector logic introduces a delay of 2.5 to 3.5 system clock cycles from an edge has been applied to the T0 pin to the counter is updated.
Enabling and disabling of the clock input must be done when T0 has been stable for at least one system clock cycle, otherwise it is a risk that a false Timer/Counter clock pulse is generated.
Each half period of the external clock applied must be longer than one system clock cycle to ensure correct sampling. The external clock must be guaranteed to have less than half the sys-
tem clock frequency (fExtClk < fclk_I/O/2) given a 50/50% duty cycle. Since the edge detector uses sampling, the maximum frequency of an external clock it can detect is half the sampling fre-
quency (Nyquist sampling theorem). However, due to variation of the system clock frequency and duty cycle caused by Oscillator source (crystal, resonator, and capacitors) tolerances, it is recommended that maximum frequency of an external clock source is less than fclk_I/O/2.5.
69
2588B–AVR–11/06