Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
AVR / datasheets / atmega16.pdf
Скачиваний:
90
Добавлен:
20.03.2015
Размер:
5.63 Mб
Скачать

ATmega16(L)

ADC Characteristics

Table 122.

ADC Characteristics

 

 

 

 

 

Symbol

 

Parameter

Condition

Min(1)

Typ(1)

Max(1)

Units

 

 

 

 

Single Ended Conversion

 

10

 

Bits

 

 

 

 

 

 

 

 

 

 

 

 

 

Differential Conversion

 

8

 

Bits

 

 

Resolution

 

Gain = 1x or 10x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Differential Conversion

 

7

 

Bits

 

 

 

 

Gain = 200x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Single Ended Conversion

 

 

 

 

 

 

 

 

VREF = 4V, VCC = 4V

 

1.5

2.5

LSB

 

 

 

 

ADC clock = 200 kHz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Single Ended Conversion

 

 

 

 

 

 

 

 

VREF = 4V, VCC = 4V

 

3

4

LSB

 

 

 

 

ADC clock = 1 MHz

 

 

 

 

 

 

Absolute Accuracy (Including INL, DNL,

 

 

 

 

 

 

 

Single Ended Conversion

 

 

 

 

 

 

Quantization Error, Gain, and Offset Error).

 

 

 

 

 

 

VREF = 4V, VCC = 4V

 

1.5

 

LSB

 

 

 

 

 

 

 

 

 

 

ADC clock = 200 kHz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Noise Reduction mode

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Single Ended Conversion

 

 

 

 

 

 

 

 

VREF = 4V, VCC = 4V

 

3

 

LSB

 

 

 

 

ADC clock = 1 MHz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Noise Reduction mode

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Single Ended Conversion

 

 

 

 

 

 

Integral Non-linearity (INL)

VREF = 4V, VCC = 4V

 

1

 

LSB

 

 

 

 

ADC clock = 200 kHz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Single Ended Conversion

 

 

 

 

 

 

Differential Non-linearity (DNL)

VREF = 4V, VCC = 4V

 

0.5

 

LSB

 

 

 

 

ADC clock = 200 kHz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Single Ended Conversion

 

 

 

 

 

 

Gain Error

VREF = 4V, VCC = 4V

 

1

 

LSB

 

 

 

 

ADC clock = 200 kHz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Single Ended Conversion

 

 

 

 

 

 

Offset Error

VREF = 4V, VCC = 4V

 

 

 

LSB

 

 

 

 

ADC clock = 200 kHz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conversion Time

Free Running Conversion

13

 

260

µs

 

 

 

 

 

 

 

 

 

 

Clock Frequency

 

50

 

1000

kHz

 

 

 

 

 

 

 

 

AVCC

 

Analog Supply Voltage

 

VCC - 0.3(2)

 

VCC + 0.3(3)

V

VREF

 

Reference Voltage

Single Ended Conversion

2.0

 

AVCC

V

 

 

 

 

 

 

 

Differential Conversion

2.0

 

AVCC - 0.2

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input voltage

 

Single ended channels

GND

 

VREF

V

VIN

 

 

Differential channels

0

 

VREF

V

 

 

 

 

 

Input bandwidth

Single ended channels

 

38.5

 

kHz

 

 

 

 

 

 

 

 

 

 

 

 

 

Differential channels

 

4

 

kHz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

297

2466P–AVR–08/07

Table 122. ADC Characteristics (Continued)

Symbol

Parameter

Condition

Min(1)

Typ(1)

Max(1)

Units

VINT

Internal Voltage Reference

 

2.3

2.6

2.9

V

RREF

Reference Input Resistance

 

 

32

 

RAIN

Analog Input Resistance

 

 

100

 

Notes: 1.

Values are guidelines only.

 

 

 

 

 

2.Minimum for AVCC is 2.7V.

3.Maximum for AVCC is 5.5V.

298 ATmega16(L)

2466P–AVR–08/07

ATmega16(L)

ATmega16

Typical

Characteristics

The following charts show typical behavior. These figures are not tested during manufacturing. All current consumption measurements are performed with all I/O pins configured as inputs and with internal pull-ups enabled. A sine wave generator with rail-to-rail output is used as clock source.

The power consumption in Power-down mode is independent of clock selection.

The current consumption is a function of several factors such as: operating voltage, operating frequency, loading of I/O pins, switching rate of I/O pins, code executed and ambient temperature. The dominating factors are operating voltage and frequency.

The current drawn from capacitive loaded pins may be estimated (for one pin) as CL*VCC*f where CL = load capacitance, VCC = operating voltage and f = average switching frequency of I/O pin.

The parts are characterized at frequencies higher than test limits. Parts are not guaranteed to function properly at frequencies higher than the ordering code indicates.

The difference between current consumption in Power-down mode with Watchdog Timer enabled and Power-down mode with Watchdog Timer disabled represents the differential current drawn by the Watchdog Timer.

Active Supply Current Figure 149. Active Supply Current vs. Frequency (0.1 - 1.0 MHz

ICC (mA)

ACTIVE SUPPLY CURRENT vs. FREQUENCY

0.1 - 1.0 MHz

2

5.5V

1.8

 

 

5.0V

1.6

4.5V

 

1.4

4.0V

 

1.2

3.6V

3.3V

 

1

3.0V

2.7V

 

0.8

 

0.6

0.4

0.2

0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency (MHz)

299

2466P–AVR–08/07

Figure 150. Active Supply Current vs. Frequency (1 - 20 MHz)

ICC (mA)

 

 

 

ACTIVE SUPPLY CURRENT vs. FREQUENCY

 

 

 

 

 

 

 

 

1 - 20 MHz

 

 

 

 

 

35

 

 

 

 

 

 

 

 

 

 

30

 

 

 

 

 

 

 

 

 

5.5V

25

 

 

 

 

 

 

 

 

 

5.0V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.5V

20

 

 

 

 

 

 

 

 

 

 

15

 

 

 

 

 

 

 

 

4.0V

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

3.6V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3V

 

 

 

5

 

 

 

 

3.0V

 

 

 

 

 

 

 

 

 

2.7V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

0

2

4

6

8

10

12

14

16

18

20

 

 

 

 

 

Frequency (MHz)

 

 

 

 

 

Figure 151. Active Supply Current vs. VCC (Internal RC Oscillator, 8 MHz)

ICC (mA)

ACTIVE SUPPLY CURRENT vs. VCC

INTERNAL RC OSCILLATOR, 8 MHz

16

-40°C 25°C

14

85°C

12

10

8

6

4

2

0

2.5

3

3.5

4

4.5

5

5.5

VCC (V)

300 ATmega16(L)

2466P–AVR–08/07

ATmega16(L)

Figure 152. Active Supply Current vs. VCC (Internal RC Oscillator, 4 MHz)

ICC (mA)

ACTIVE SUPPLY CURRENT vs. VCC

INTERNAL RC OSCILLATOR, 4 MHz

9

 

25°C

-40°C

8

 

 

 

7

85°C

6

5

4

3

2

1

0

2.5

3

3.5

4

4.5

5

5.5

VCC (V)

Figure 153. Active Supply Current vs. VCC (Internal RC Oscillator, 2 MHz)

ICC (mA)

ACTIVE SUPPLY CURRENT vs. VCC

INTERNAL RC OSCILLATOR, 2 MHz

4.5

4

25°C

 

 

85°C

3.5

-40°C

3

2.5

2

1.5

1

0.5

0

2.5

3

3.5

4

4.5

5

5.5

VCC (V)

301

2466P–AVR–08/07

Figure 154. Active Supply Current vs. VCC (Internal RC Oscillator, 1 MHz)

ACTIVE SUPPLY CURRENT vs. VCC

INTERNAL RC OSCILLATOR, 1 MHz

2.5

85°C 25°C

2

-40°C

1.5

ICC (mA)

1

0.5

0

2.5

3

3.5

4

4.5

5

5.5

VCC (V)

Figure 155. Active Supply Current vs. VCC (32 kHz External Oscillator)

ICC (uA)

ACTIVE SUPPLY CURRENT vs. VCC

32kHz EXTERNAL OSCILLATOR

180

85°C

160

25°C

140

120

100

80

60

40

20

0

2.5

3

3.5

4

4.5

5

5.5

VCC (V)

302 ATmega16(L)

2466P–AVR–08/07

Соседние файлы в папке datasheets