Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
AVR / datasheets / attiny_13.pdf
Скачиваний:
64
Добавлен:
20.03.2015
Размер:
1.19 Mб
Скачать

Serial Downloading

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Both the Flash and EEPROM memory arrays can be programmed using the serial SPI

 

bus while

RESET

is pulled to GND. The serial interface consists of pins SCK, MOSI

 

(input) and MISO (output). After

RESET

is set low, the Programming Enable instruction

 

needs to be executed first before program/erase operations can be executed. NOTE, in

 

Table 49 on page 102, the pin mapping for SPI programming is listed. Not all parts use

 

the SPI pins dedicated for the internal SPI interface.

 

Figure 53. Serial Programming and Verify(1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+1.8 - 5.5V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCC

 

 

 

MOSI

 

 

 

 

 

 

 

 

 

MISO

 

 

 

 

 

 

 

 

 

 

 

SCK

 

 

 

 

 

 

RESET

GND

Notes: 1. If the device is clocked by the internal Oscillator, it is no need to connect a clock source to the CLKI pin.

Table 49. Pin Mapping Serial Programming

Symbol

Pins

I/O

Description

 

 

 

 

MOSI

PB0

I

Serial Data in

 

 

 

 

MISO

PB1

O

Serial Data out

 

 

 

 

SCK

PB2

I

Serial Clock

 

 

 

 

When programming the EEPROM, an auto-erase cycle is built into the self-timed programming operation (in the Serial mode ONLY) and there is no need to first execute the Chip Erase instruction. The Chip Erase operation turns the content of every memory location in both the Program and EEPROM arrays into 0xFF.

Depending on CKSEL Fuses, a valid clock must be present. The minimum low and high periods for the serial clock (SCK) input are defined as follows:

Low:> 2 CPU clock cycles for fck < 12 MHz, 3 CPU clock cycles for fck >= 12 MHz

High:> 2 CPU clock cycles for fck < 12 MHz, 3 CPU clock cycles for fck >= 12 MHz

102 ATtiny13

2535A–AVR–06/03

Serial Programming

Algorithm

ATtiny13

When writing serial data to the ATtiny13, data is clocked on the rising edge of SCK.

When reading data from the ATtiny13, data is clocked on the falling edge of SCK. See Figure 54 and Figure 55 for timing details.

To program and verify the ATtiny13 in the Serial Programming mode, the following sequence is recommended (see four byte instruction formats in Table 51):

1.Power-up sequence:

Apply power between VCC and GND while RESET and SCK are set to “0”. In some systems, the programmer can not guarantee that SCK is held low during power-up. In this case, RESET must be given a positive pulse of at least two CPU clock cycles duration after SCK has been set to “0”.

2.Wait for at least 20 ms and enable serial programming by sending the Programming Enable serial instruction to pin MOSI.

3.The serial programming instructions will not work if the communication is out of synchronization. When in sync. the second byte (0x53), will echo back when issuing the third byte of the Programming Enable instruction. Whether the echo is correct or not, all four bytes of the instruction must be transmitted. If the 0x53 did not echo back, give RESET a positive pulse and issue a new Programming Enable command.

4.The Flash is programmed one page at a time. The memory page is loaded one byte at a time by supplying the 5 LSB of the address and data together with the Load Program memory Page instruction. To ensure correct loading of the page, the data low byte must be loaded before data high byte is applied for a given address. The Program memory Page is stored by loading the Write Program memory Page instruction with the 3 MSB of the address. If polling is not used,

the user must wait at least tWD_FLASH before issuing the next page. (See Table 50.) Accessing the serial programming interface before the Flash write operation completes can result in incorrect programming.

5.A: The EEPROM array is programmed one byte at a time by supplying the address and data together with the appropriate Write instruction. An EEPROM memory location is first automatically erased before new data is written. If polling

is not used, the user must wait at least tWD_EEPROM before issuing the next byte. (See Table 50.) In a chip erased device, no 0xFFs in the data file(s) need to be programmed.

B: The EEPROM array is programmed one page at a time. The Memory page is loaded one byte at a time by supplying the 2 LSB of the address and data together with the Load EEPROM Memory Page instruction. The EEPROM Memory Page is stored by loading the Write EEPROM Memory Page Instruction with the 4 MSB of the address. When using EEPROM page access only byte locations loaded with the Load EEPROM Memory Page instruction is altered. The remaining locations remain unchanged. If polling is not used, the used must wait

at least tWD_EEPROM before issuing the next page (See Table 48). In a chip erased device, no 0xFF in the data file(s) need to be programmed.

6.Any memory location can be verified by using the Read instruction which returns the content at the selected address at serial output MISO.

7.At the end of the programming session, RESET can be set high to commence normal operation.

8.Power-off sequence (if needed): Set RESET to “1”.

Turn VCC power off.

103

2535A–AVR–06/03

Data Polling Flash

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When a page is being programmed into the Flash, reading an address location within

 

the page being programmed will give the value 0xFF. At the time the device is ready for

 

a new page, the programmed value will read correctly. This is used to determine when

 

the next page can be written. Note that the entire page is written simultaneously and any

 

address within the page can be used for polling. Data polling of the Flash will not work

 

for the value 0xFF, so when programming this value, the user will have to wait for at

 

least tWD_FLASH before programming the next page. As a chip-erased device contains

 

0xFF in all locations, programming of addresses that are meant to contain 0xFF, can be

 

skipped. See Table 50 for tWD_FLASH value.

 

Data Polling EEPROM

When a new byte has been written and is being programmed into EEPROM, reading the

 

address location being programmed will give the value 0xFF. At the time the device is

 

ready for a new byte, the programmed value will read correctly. This is used to deter-

 

mine when the next byte can be written. This will not work for the value 0xFF, but the

 

user should have the following in mind: As a chip-erased device contains 0xFF in all

 

locations, programming of addresses that are meant to contain 0xFF, can be skipped.

 

This does not apply if the EEPROM is re-programmed without chip erasing the device.

 

In this case, data polling cannot be used for the value 0xFF, and the user will have to

 

wait at least tWD_EEPROM before programming the next byte. See Table 50 for tWD_EEPROM

 

value.

 

 

Table 50. Minimum Wait Delay Before Writing the Next Flash or EEPROM Location

 

 

 

 

 

Symbol

 

 

 

Minimum Wait Delay

 

 

 

 

 

tWD_FLASH

 

 

 

4.5 ms

 

tWD_EEPROM

 

 

 

4.0 ms

 

tWD_ERASE

 

 

 

4.0 ms

 

tWD_FUSE

 

 

 

4.5 ms

Figure 54. Serial Programming Waveforms

SERIAL DATA INPUT

MSB

LSB

(MOSI)

 

 

SERIAL DATA OUTPUT

MSB

LSB

(MISO)

 

 

SERIAL CLOCK INPUT

 

 

(SCK)

 

 

SAMPLE

 

 

104 ATtiny13

2535A–AVR–06/03

 

 

 

 

 

 

 

 

 

 

 

 

ATtiny13

 

 

 

 

 

 

 

 

 

 

 

 

Table 51. Serial Programming Instruction Set

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Instruction Format

 

 

 

 

 

 

 

 

 

 

 

 

 

Instruction

Byte 1

Byte 2

Byte 3

Byte4

 

Operation

 

 

 

 

 

 

 

 

Programming Enable

1010 1100

0101 0011

xxxx xxxx

xxxx xxxx

 

Enable Serial Programming after

 

 

 

 

 

 

 

 

 

 

RESET

goes low.

 

 

 

 

 

 

 

Chip Erase

1010 1100

100x xxxx

xxxx xxxx

xxxx xxxx

 

Chip Erase EEPROM and Flash.

 

 

 

 

 

 

 

Read Program Memory

0010 H000

0000 000a

bbbb bbbb

oooo oooo

 

Read H (high or low) data o from

 

 

 

 

 

 

 

 

 

 

Program memory at word address a:b.

 

 

 

 

 

 

 

Load Program Memory Page

0100 H000

000x xxxx

xxxb bbbb

iiii iiii

 

Write H (high or low) data i to Program

 

 

 

 

 

 

 

 

 

 

memory page at word address b. Data

 

 

 

 

 

 

 

 

 

 

low byte must be loaded before Data

 

 

 

 

 

 

 

 

 

 

high byte is applied within the same

 

 

 

 

 

 

 

 

 

 

address.

 

 

 

 

 

 

 

Write Program Memory Page

0100 1100

0000 000a

bbxx xxxx

xxxx xxxx

 

Write Program memory Page at

 

 

 

 

 

 

 

 

 

 

address a:b.

 

 

 

 

 

 

 

Read EEPROM Memory

1010 0000

000x xxxx

xxbb bbbb

oooo oooo

 

Read data o from EEPROM memory at

 

 

 

 

 

 

 

 

 

 

address b.

 

 

 

 

 

 

 

Write EEPROM Memory

1100 0000

000x xxxx

xxbb bbbb

iiii iiii

 

Write data i to EEPROM memory at

 

 

 

 

 

 

 

 

 

 

address b.

 

 

 

 

 

 

 

Load EEPROM Memory

1100 0001

0000 0000

0000 00bb

iiii iiii

 

Load data i to EEPROM memory page

Page (page access)

 

 

 

 

 

buffer. After data is loaded, program

 

 

 

 

 

 

 

 

 

 

EEPROM page.

 

 

 

 

 

 

 

 

 

Write EEPROM Memory

1100 0010

00xx xxxx

xxbb bb00

xxxx xxxx

 

 

 

 

Page (page access)

 

 

 

 

 

Write EEPROM page at address b.

 

 

 

 

 

 

 

Read Lock bits

0101 1000

0000 0000

xxxx xxxx

xxoo oooo

 

Read Lock bits. “0” = programmed, “1”

 

 

 

 

 

 

 

 

 

 

= unprogrammed. See Table 43 on

 

 

 

 

 

 

 

 

 

 

page 99 for details.

 

 

 

 

 

 

 

Write Lock bits

1010 1100

111x xxxx

xxxx xxxx

11ii iiii

 

Write Lock bits. Set bits = “0” to

 

 

 

 

 

 

 

 

 

 

program Lock bits. See Table 43 on

 

 

 

 

 

 

 

 

 

 

page 99 for details.

 

 

 

 

 

 

 

Read Signature Byte

0011 0000

000x xxxx

xxxx xxbb

oooo oooo

 

Read Signature Byte o at address b.

 

 

 

 

 

 

 

Write Fuse bits

1010 1100

1010 0000

xxxx xxxx

iiii iiii

 

Set bits = “0” to program, “1” to

 

 

 

 

 

 

 

 

 

 

unprogram.

 

 

 

 

 

 

 

Write Fuse High bits

1010 1100

1010 1000

xxxx xxxx

iiii iiii

 

Set bits = “0” to program, “1” to

 

 

 

 

 

 

 

 

 

 

unprogram. See Table 37 on page 81

 

 

 

 

 

 

 

 

 

 

for details.

 

 

 

 

 

 

 

Read Fuse bits

0101 0000

0000 0000

xxxx xxxx

oooo oooo

 

Read Fuse bits. “0” = programmed, “1”

 

 

 

 

 

 

 

 

 

 

= unprogrammed.

 

 

 

 

 

 

 

Read Fuse High bits

0101 1000

0000 1000

xxxx xxxx

oooo oooo

 

Read Fuse High bits. “0” = pro-

 

 

 

 

 

 

 

 

 

 

grammed, “1” = unprogrammed. See

 

 

 

 

 

 

 

 

 

 

Table 37 on page 81 for details.

 

 

 

 

 

 

 

Read Calibration Byte

0011 1000

000x xxxx

0000 0000

oooo oooo

 

Read Calibration Byte

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If o = “1”, a programming operation is

Poll RDY/BSY

 

 

1111 0000

0000 0000

xxxx xxxx

xxxx xxxo

 

 

 

 

 

 

 

 

 

 

 

still busy. Wait until this bit returns to

 

 

 

 

 

 

 

 

 

 

“0” before applying another command.

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: a = address high bits, b = address low bits, H = 0 - Low byte, 1 - High Byte, o = data out, i = data in, x = don’t care

105

2535A–AVR–06/03

Serial Programming

Characteristics

High-voltage Serial

Programming

Figure 55. Serial Programming Timing

MOSI

tOVSH

 

 

 

tSHOX

tSLSH

 

 

SCK

tSHSL

MISO

tSLIV

Table 52. Serial Programming Characteristics, TA = -40°C to 85°C, VCC = 1.8 - 5.5V (Unless Otherwise Noted)

Symbol

Parameter

Min

Typ

Max

Units

 

 

 

 

 

 

1/tCLCL

Oscillator Frequency (ATtiny13V)

0

 

1

MHz

tCLCL

Oscillator Period (ATtiny13V)

1,000

 

 

ns

 

Oscillator Frequency (ATtiny13L, VCC = 2.7 -

 

 

 

 

1/tCLCL

5.5V)

0

 

8

MHz

tCLCL

Oscillator Period (ATtiny13L, VCC = 2.7 - 5.5V)

125

 

 

ns

 

Oscillator Frequency (ATtiny13, VCC = 4.5V -

 

 

 

 

1/tCLCL

5.5V)

0

 

16

MHz

tCLCL

Oscillator Period (ATtiny13, VCC = 4.5V - 5.5V)

67

 

 

ns

tSHSL

SCK Pulse Width High

2 tCLCL*

 

 

ns

tSLSH

SCK Pulse Width Low

2 tCLCL*

 

 

ns

tOVSH

MOSI Setup to SCK High

tCLCL

 

 

ns

tSHOX

MOSI Hold after SCK High

2 tCLCL

 

 

ns

tSLIV

SCK Low to MISO Valid

TBD

TBD

TBD

ns

Note: 1.

2 tCLCL for fck < 12 MHz, 3 tCLCL for fck >= 12 MHz

 

 

 

 

This section describes how to program and verify Flash Program memory, EEPROM Data memory, Lock bits and Fuse bits in the ATtiny13.

106 ATtiny13

2535A–AVR–06/03

ATtiny13

Figure 56. High-voltage Serial Programming

11.5 - 12.5V

4.5 - 5.5V

 

 

 

 

ATtiny

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PB5 (RESET)

VCC

 

 

 

 

 

 

 

SERIAL CLOCK INPUT

 

 

 

PB3 (XTAL1)

PB2

 

 

 

 

SERIAL DATA OUTPUT

 

 

 

 

 

 

 

 

 

 

PB1

 

 

 

 

SERIAL INSTR. INPUT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GND

PB0

 

 

 

 

SERIAL DATA INPUT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 53. Pin Name Mapping

Signal Name in High-voltage

 

 

 

Serial Programming Mode

Pin Name

I/O

Function

 

 

 

 

SDI

PB0

I

Serial Data Input

 

 

 

 

SII

PB1

I

Serial Instruction Input

 

 

 

 

SDO

PB2

O

Serial Data Output

 

 

 

 

SCI

PB3

I

Serial Clock Input (min. 220ns period)

 

 

 

 

The minimum period for the Serial Clock Input (SCI) during High-voltage Serial Programming is 220 ns.

Table 54. Pin Values Used to Enter Programming Mode

Pin

Symbol

Value

 

 

 

SDI

Prog_enable[0]

0

 

 

 

SII

Prog_enable[1]

0

 

 

 

SDO

Prog_enable[2]

0

 

 

 

107

2535A–AVR–06/03

Соседние файлы в папке datasheets