
- •Таврический национальный университет
- •Лекция № 1. Водород
- •Соединения водорода
- •Литература: [1] с. 330 - 338, [2] с. 411 - 415, [3] с. 262 - 270 Лекция № 2. Элементы VII-a-подгрупы (галогены)
- •Cоединения галогенов
- •Лекция № 3. Элементы via-подгруппы
- •3.1. Кислород
- •Соединения кислорода
- •2Hso4- - 2e- h2s2o8
- •Соединения серы
- •3.3. Подгруппа селена
- •Соединения селена и теллура
- •Литература: [1] с. 359 - 383, [2] с. 425 - 435, [3] с. 297 - 328 Лекция № 4. Элементы va-подгруппы
- •Соединения азота
- •4.2. Фосфор
- •Соединения фосфора
- •4.3. Элементы подгруппы мышьяка
- •Соединения мышьяка, сурьмы и висмута
- •Литература: [1] с. 383 - 417, [2] с. 435 - 453, [3] с. 328 - 371 Лекция № 5. Элементы iva-подгруппы
- •5.1. Углерод
- •Соединения углерода
- •5.2. Кремний
- •Соединения кремния
- •5.3. Германий, олово, свинец
- •Соединения германия
- •Соединения олова
- •Соединения свинца
- •Литература: [1] с. 417 - 435, 491 - 513, [2] с. 453 - 472, [3] с. 371 - 409 Лекция № 6. Элементы iiia-подгруппы
- •Соединения бора
- •6.2. Алюминий
- •Соединения алюминия
- •6.3. Подгруппа галлия
- •Соединения элементов подгруппы галлия
- •Литература: [1] с. 608 - 619, [2] с. 472 - 481, [3] с. 412 - 446 Лекция № 7. Элементы iia-подгруппы
- •7.1. Бериллий
- •Соединения бериллия
- •7.2. Магний
- •Соединения магния
- •7.3. Щелочноземельные металлы
- •Соединения щелочноземельных металлов
- •Литература: [1] с. 587 - 599, [2] с. 481 - 486, [3] с. 447 - 460
- •7.4. Элементы ia-подгруппы (щелочные металлы)
- •Соединения щелочных металлов
- •Литература: [1] с. 543 - 551, [2] с. 486 - 489, [3] с. 461 - 470 Лекция № 8. Общая характеристика d-элементов. Элементы iiiв - vb подгрупп (подгруппы скандия,титана и ванадия)
- •8.1. Общая характеристика d-элементов
- •8.2. Элементы iiiв подгруппы (подгруппа скандия)
- •Соединения элементов подгруппы скандия
- •8.3. Элементы ivв подгруппы (подгруппа титана)
- •Соединения титана, циркония и гафния
- •8.4. Элементы vв подгруппы (подгруппа ванадия)
- •Соединения ванадия, ниобия и тантала
- •Литература: [1] с. 619 - 633, [2] с. 489 - 523, [3] с. 478 - 481, 499 - 520 Лекция № 9. Элементы viв- и viiв-подгрупп
- •9.1 Элементы viв-подгруппы (подгруппа хрома)
- •Соединения хрома, молибдена и вольфрама
- •9.2. Элементы viiв-подгруппы (подгруппа марганца)
- •Соединения маргнаца, технеция и рения
- •Литература: [1] с. 633 - 645, [2] с. 523 - 539, [3] с. 521 - 548 Лекция № 10. Элементы viiib-подгруппы
- •10.1. Элементы триады железа
- •Соединения железа
- •Соединения кобальта
- •Соединения никеля
- •Литература: [1] с. 650 - 679, [2] с. 540 - 550, [3] с. 548 - 584
- •10.2. Платиновые металлы
- •Соединения рутения и осмия
- •Соединения родия и иридия
- •Соединения палладия и платины
- •Лекция № 11. Элементы ib- и iib-подгрупп
- •11.1 Элементы ib-подгруппы (подгруппы меди)
- •Соединения меди
- •Соединения серебра
- •Соединения золота
- •11.2. Элементы iib-подгруппы (подгруппа цинка)
- •Соединения цинка и кадмия
- •Соединения ртути
- •Литература: [1] с. 551 - 563, 599 - 608, [2] с. 550 - 554, [3] с. 585 - 602
- •Лекция № 12. Химия f-элементов
- •12.1. Лантаниды
- •Соединения лантанидов
- •12.2. Актиниды
- •Соединения актинидов
- •Лекция № 13. Инертные газы
- •13.1. Гелий. Неон. Аргон
- •13.2. Элементы подгруппы криптона
- •Соединения криптона, ксенона и радона
- •Список рекомендуемой литературы
- •Содержание
8.2. Элементы iiiв подгруппы (подгруппа скандия)
Элементы IIIВ-подгруппы полные электронные аналоги (скандий - Sc, иттрий - Y, лантан - La и радиоактивный актиний - Ac) с общей электронной формулой (n-1)d1ns2. Наличие на d-подуровне единственного электрона обуславливает повышенную активность данных элементов и образование ими соединений в степени окисления +3. В ряду Sc – Y – La – Ac химическая активность заметно возрастает: скандий напоминает по свойствам алюминий, а его аналоги приближаются к щелочноземельным металлам. Для скандия типично координационное число 6, для иттрия и лантана оно достигает 8 и 9.
Скандий, иттрий и лантан рассеянные элементы, самостоятельных рудных месторождений не образуют. Получают их электролизом хлоридов в расплавах или металлотермическим методом.
Химические свойства. При повышенных температурах они реагируют практически со всеми неметаллами, исключая инертные газы. В ряду активности металлов расположены далеко впереди
водорода. Скандий из-за пассивирования с водой не реагирует, а лантан уже при обычных условиях медленно реагирует с водой:
2La + 6H2O = 2La(OH)3 + 3H2
Металлы легко взаимодействуют с разбавленными кислотами, причем разбавленную азотную кислоту восстанавливают до нитрата аммония:
8Sc + 30HNO3(разб) = 8Sc(NO3)3 + 3NH4NO3 + 9H2O
Соединения элементов подгруппы скандия
Оксиды - Э2О3 - белые кристаллические тугоплавкие вещества. Получают прямым синтезом или разложением нитратов при 250 ºС:
4Lа(NO3)3 = 2Lа2O3 + 12NO2 + 3O2
В ряду оксидов Sc2О3 – Y2О3 – La2О3 ослабевают кислотные свойства и усиливаются основные, активность взаимодействия с водой возрастает.
La2O3 + 3H2O = 2La(OH)3
В ряду гидроксидов Sc(ОН)3 – Y(ОН)3 – La(ОН)3 увеличивается растворимость в воде и усиливаются основные признаки, так Sc(OH)3 - амфотерен, а La(OH)3 - сильное основание, растворимое в воде (щелочь).
Галогениды и соли скандия, иттрия, лантана напоминают по свойствам галогениды и соли алюминия. К образованию комплексных галогенидов склонен лишь фторид скандия, для которого известны гексафтороскандиаты M+13[ScF6], которые устойчивы и растворимы в воде.
8.3. Элементы ivв подгруппы (подгруппа титана)
Элементы IVB-подгруппы (титан - Ti, цирконий - Zr, гафний - Hf и курчатовий - Ku) полные электронные аналоги с общей электронной формулой (n-1)d2ns2. При переходе от Ti к Zr атомные радиусы возрастают, а Zr и Hf из-за лантаноидного сжатия имеют практически одинаковые размеры атомов и ионов, в связи с чем их свойства близки.
Титан - довольно распространенный элемент (кларк равен 0,25 мол.%), основные минералы: рутил - TiO2, ильменит - FeTiO3, перовскит - CaTiO3. Цирконий и гафний - рассеянные элементы. Основные минералы циркония: циркон - ZrSiO4 и баддалеит - ZrO2.
Простые вещества титан, цирконий и гафний - серебристо-белые тугоплавкие и прочные металлы, хорошо поддающиеся механической обработке. Титан легкий металл (4,5 г/см3), цирконий и гафний - металлы тяжелые.
Металлы подгруппы титана получают в промышленности металлотермическими методами:
TiCl4 + 2Mg = 2MgCl2 + Ti;
K2[ZrF6] + 4Na = 4NaF + 2KF + Zr
Титан ввиду его прочности и легкости широко используется в самолетостроении и кораблестроении, из него изготавливают корпуса подводных лодок. Цирконий и в меньшей мере гафний используются как конструкционные материалы в атомной энергетике.
Химические свойства. При обычных условиях титан, цирконий и гафний устойчивы. При нагревании горят в атмосфере кислорода, образуя оксиды ЭО2, реагируют с азотом (ЭN) при 800 ºС и галогенами (ЭHal4) при 140 – 400 ºС. Титан при нагревании растворяется в соляной кислоте:
t
2Ti + 6HCl = 2TiCl3 + 3H2
Цирконий и гафний взаимодействуют с кислотами лишь в том случае, когда есть условия для их окисления и образования устойчивых анионных координационных соединений. Так они реагируют с плавиковой и концентрированной серной кислотами, а также со смесью HF + HNO3 или с "царской водкой":
Э + 6HF = H2[ЭF6] + 2H2;
Zr + 5H2SO4 = H2[Zr(SO4)3] + 2SO2 + 4H2O;
3Zr + 4HNO3 + 18HCl = 3H2[ZrCl6] + 4NO + 8H2O;
3Э + 4HNO3 + 18HF = 3H2[ЭF6] + 4NO + 8H2O
К растворам щелочей цирконий и гафний (в меньшей степени титан) устойчивы.