
- •Министерство образования и науки Российской Федерации
- •Содержание
- •Введение
- •1. Современное состояние проблемы моделирования систем
- •1.1. Моделирование как метод научного познания. Философские аспекты моделирования
- •1.2. Использование моделирования при исследовании и проектировании систем
- •1.2.1. Особенности разработки систем
- •1.2.2. Особенности использования моделей
- •1.2.3. Перспективы развития методов и средств моделирования систем
- •2. Основные понятия теории моделирования систем
- •2.1. Принцип системного подхода в моделировании систем
- •2.1.1. Структура системы – совокупность связей между элементами системы
- •2.1.2. Экспериментальные исследования систем
- •2.2. Стадии разработки моделей
- •2.3. Понятие подобия
- •2.3.1. Общие положения
- •2.3.2. Основные понятия теории размерности
- •2.3.3. Примеры подобия
- •2.4. Общая характеристика проблемы моделирования систем
- •2.4.1. Объект моделирования.
- •2.4.2. Характеристики моделей систем
- •2.4.3. Цели моделирования систем
- •2.5. Классификация видов и методов моделирования систем
- •2.5.1. Классификационные признаки
- •2.5.2. Математическое моделирование.
- •2.6. Построение модели
- •2.7. Разработка вычислительного метода
- •2.8. Проверка (тестирование) модели
- •3. Математическое моделирование
- •3.1. Задачи и цели исследования математических моделей
- •3.2. Методология математического моделирования. Системный анализ
- •3.2.1. Понятие системы
- •3.2.2. Этапы системного анализа и декомпозиция
- •3.2.3. Экспертные оценки
- •3.3. Классификация математических моделей
- •3.4. Методы формализованного описания системы
- •3.4.1. Математическая модель по “входу-выходу”
- •3.4.2. Математическая модель в пространстве состояний
- •3.4.3. Описание линейных систем в пространстве состояний
- •3.4.4. Реализация систем в пространстве состояний
- •3.5. Методы построения математических моделей и их применение в сапр
- •3.5.1. Методы построения математических моделей
- •3.5.2. Математические модели с точки зрения сапр
- •3.5.4. Методика составления уравнений динамики элементов сау
- •3.6. Математические модели системы управления. Понятие об оптимальном управлении
- •4. Экспериментальное определение динамических характеристик объектов моделирования
- •4.1. Понятие о динамических характеристиках объектов
- •4.2. Определение динамических характеристик элементов систем по временным характеристикам
- •4.2.1. Определение статических характеристик
- •4.2.2. Определение динамических характеристик объектов с помощью периодических воздействий
- •4.4.1. Временные характеристики и их свойства
- •4.4.2. Определение характеристик апериодического звена
- •4.4.3. Определение характеристик колебательного звена
- •4.3. Формы описания динамических свойств объектов
- •4.4. Синтез пассивных двухполюсников и четырехполюсников
- •4.3.1. Разложение передаточной функции активного четырехполюсника
- •4.3.2. Способы синтеза двухполюсников
- •4.5. Экспериментальная отработка характеристик системы управления движущимся объектом
- •4.5.1. Общие положения
- •4.5.2. Алгоритмы обработки внешнетраекторных измерений
- •5. Динамические свойства воспринимающих элементов и датчиков
- •5.1. Основные определения и понятия
- •5.1.1. Понятие датчика
- •5.1.2. Классификация датчиков
- •5.2. Основные характеристики датчиков
- •5.2.1. Погрешности измерений
- •5.2.2. Чувствительность датчиков
- •5.2.3. Быстродействие датчика
- •5.3. Схемы формирования сигналов пассивных датчиков
- •5.3.1. Общие характеристики
- •5.4. Оптические датчики
- •5.4.1. Определения и основные зависимости
- •5.4.2. Фоторезисторы
- •5.4.3. Фотодиоды
- •5.4.4. Тепловые приемники излучения
- •5.4.5. Датчики изображения
- •5.4.6. Волоконная оптика
- •5.5. Датчики температуры
- •5.5.1. Методы измерения температуры
- •5.6. Датчики положения и перемещения
- •5.6.1. Методы определения положения и перемещения
- •5.6.2. Резисторные потенциометры
- •5.6.3. Индуктивные датчики
- •5.6.4. Емкостные датчики
- •5.6.5. Цифровые датчики
- •5.6.6. Датчики близости
- •5.7. Датчики деформации
- •5.7.1. Основные определения
- •5.7.2. Основные положения
- •5.8. Тахометрические датчики
- •5.8.1. Электродинамическая тахометрия
- •5.8.2. Импульсная тахометрия
- •5.8.3. Гирометры
- •5.9. Датчики ускорения, вибрации и удара
- •5.9.1. Общие положения
- •5.9.2. Принцип действия сейсмических датчиков
- •5.10. Датчики скорости, расхода и уровня жидкости
- •5.10.1. Элементарные понятия
- •5.10.2 Датчики и методы измерения скорости жидкости
- •5.10.3. Измерение расхода жидкости
- •5.10.4. Измерение и указание уровня жидкости
- •5.11. Датчики влажности
- •5.11.1. Определения
- •5.11.2. Гигрометры
- •5.12. Акустические датчики
- •5.12.1. Распространение плоской волны
- •5.12.2. Распространение трехмерной волны
- •5.12.3. Микрофоны
- •5.12.4. Измерение интенсивности
- •6. Основы технологии имитационного моделирования
- •6.1. Основные определения и понятия
- •6.2. Область применения и классификация имитационных моделей
- •6.3. Описание поведения системы
- •6.3.1. Общие положения.
- •6.3.2. Методика моделирования случайных факторов
- •6.3.3. Два подхода к моделированию случайных чисел
- •6.4. Оценка качества псевдослучайных чисел
- •6.5. Оценка качества имитационного моделирования
- •7. Методы испытаний систем управления и их применение в системах автоматизированного проектирования (сапр)
- •7.1. Полунатурное моделирование
- •7.1.1. Общие положения
- •7.1.2. Автоматизация испытаний на основе полунатурного моделирования
- •8. Анализ систем управления с эвм
- •8.1. Основные задачи
- •8.2. Особенности систем управления с эвм
- •8.2. Основные положения из теории дискретных линейных систем
- •8.2.1. Последовательности
- •8.2.2. Линейные системы с постоянными параметрами
- •8.2.3. Разностные уравнения
- •8.2.3.1. Решение разностных уравнений методом прямой подстановки
- •8.3. Расчет цифровых фильтров по фильтрам непрерывного времени
- •8.3.1 Методика синтеза цифровых фильтров. Общие положения
- •8.3.2 Методы дискретизации аналоговых фильтров
- •8.3.3. Геометрическая интерпретация методов расчета цифровых фильтров по фильтрам непрерывного времени
- •9. Моделирование свойств объектов с помощью системыMatLab
- •9.1. Введение
- •9.2. MatLab как научный калькулятор
- •9.2.1. Командное окно
- •9.2.2. Операции с числами
- •9.2.3. Простейшие операции с векторами и матрицами
- •9.2.4. Некоторые функции прикладной численной математики
- •9.2.5. Построение простейших графиков
- •9.3. Исследование линейных стационарных систем (лсс)
- •9.3.1. Классы пакета control.L
- •9.3.2. Ввод и преобразование моделей
- •Пример создания модели
- •9.3.3. Анализ системы
- •9.4. Моделирование динамических процессов с помощью подсистемы MatLab simulink
- •9.4.1. Краткие сведения о подсистеме MatLab simulink
- •9.4.2. Запуск подсистемы simulink
- •9.4.3. Создание модели
- •9.4.4. Некоторые основные приемы подготовки и редактирования модели
- •9.4.5. Установка параметров моделирования и его выполнение
- •9.2.2. Результат составления модели
- •Приложения п1. Динамические характеристики объектов моделирования
- •П2. Примеры составление функциональной и структурной схемы динамической системы
- •П2.1. Система управления угловой скорости вращения ротора двигателя при условии действия постоянного возмущения
- •П2.2. Система сопровождения цели
- •П2.3. Система автоматического наведения летательного аппарата на объект
- •П2.4. Система управления уровнем жидкости
- •П2.5. Система управления экономическими параметрами
- •Использованные источники
- •Основы теории и практики моделирования динамических систем
П2.4. Система управления уровнем жидкости
Существует некая система управления уровнем жидкости [13], принципиальная схема которой представлена на рисунке П2.11.
На рисунке: П – привод; РК – регулируемый клапан; РМ – расходомер; УМ – уровнемер; hз(t) – заданный уровень жидкости в резервуаре; h(t) – текущий уровень; ε(t) рассогласование; Gп, Gр – приток и расход жидкости.
Величину притока Gп можно менять посредством регулирования клапана РК, который управляется электроприводом П.
Уровнемером УР
измеряется действительный уровень h(t)
и сравнивается с требуемым уровнем
hз(t):
.
При
поддерживается заданный уровеньhз(t).
Изменение расхода Gр нарушает баланс в схеме, отсюда следует, что Gр является возмущающим сигналом.
Для повышения точности регулирования наряду с ε(t) используются сигналы Gп, Gр, которые порождают местные обратные связи.
При использовании Gр имеет место комбинированное регулирование по отклонению и возмущению.
Приведенной
принципиальной схеме соответствует
функциональная схема, приведенная на
рисунке П2.12.
На рисунке обозначено: 1 – задающее устройство; 2- сравнивающее устройство; 3 – регулятор; 4 – усилитель мощности; 5 – привод; 6- регулирующий орган (клапан); 7 – объект управления; 8 – уровнемер; 9, 10 – расходомеры.
П2.5. Система управления экономическими параметрами
Рассмотрим составление схемы на примере системы управления экономическими параметрами.
Система управления статьей дохода бюджета в виде модели с обратной связью представлена на рисунке П2.13 [13].
Использованные источники
Аш Ж. и соавторы. Датчики измерительных систем: В 2-х книгах. Книга 1. Перевод с французского. – М: Мир, 1997. – 480 с.
Аш Ж. и соавторы. Датчики измерительных систем: В 2-х книгах. Книга 2. Перевод с французского. – М: Мир, 1997. – 424 с.
Балакирев В.С. и др. Экспериментальное определение динамических характеристик промышленных объектов управления. – М: Энергия, 1967. – 232 с.
Вентцель Е.С. Теория вероятностей: Учебник для вузов – М.: Высшая школа. 1999. – 576 с.
Гультяев А.К. MATLAB 5.2. Имитационное моделирование в среде Windows: Практическое пособие – Санкт-Петербург: Корона, 1999. – 286 с.
Егоренков Д.Л., Фрадков А.Л., Харламов В.Ю. Основы математического моделирования. Построение и анализ моделей с примерами на языке MatLab – Санкт-Петербург: БГТУ “Военмех”, 1996. – 188 с.
Земсков А.В. Теория, конструкция и основы проектирования систем управления. Раздел 1. Теория автоматического управления. - МО РФ: Михайловская военная артиллерийская академия, 2005. – 312 с.
Костогрызов А.И., Нистратов Г.А. Стандартизация, математическое моделирование, рациональное управление и сертификация в области системной и программной инженерии – М.: Изд-во ВПК и 3 ЦНИИ МО РФ. 2004. – 396 с.
Краснов Н.Ф. Аэродинамика. Учебник для ВТУЗов. - М: Высшая школа, 1971. – 632 с.
Лазарев Ю.Ф. MatLAB 5.x. – К: Издательская группа BHV, 2000. – 384 с.
Макаров И.М., Менский Б.М. Линейные автоматические системы (элементы теории, методы расчета и справочный материал). – М.: Машиностроение, 1982. – 504 с.
Медведев В.С., Потемкин В.Г. Control Sistem Toolbox. Matlab 5 для студентов. – М: Диалог МИФИ, 1999. – 456 с.
Методы классической и современной теории автоматического управления: Учебник в 5-ти томах; Т.1: Математические модели, динамические характеристики и анализ систем управления / Под ред. К.А. Пупкова, Н.Д. Егупова. – М: Издательство МГТУ им. Н.Э. Баумана, 2004. – 656 с.
Рабинер Л., Гоулд Б. Теория и применение цифровой обработки сигналов. Перевод с английского. – М: Мир, 1978. – 848 с.
Самарский А.А., Михайлов А.П. Математическое моделирование: Идеи. Методы. Примеры. – М.: ФИЗМАТЛИТ, 2002. – 320 с.
Седов Л.И. Методы подобия и размерности в механике. - М: Наука. Гл. ред. физ.-мат. лит., 1987. – 432 с.
Советов Б.Я., Яковлев С.А. Моделирование систем: Учеб. для вузов по специальности “Автоматизир. системы обработки информ. и упр.” – М: Высшая школа, 1998. – 319 с.: ил.
Сольницев Р.И. Автоматизация проектирования систем автоматического управления: Учеб. для вузов по специальности “Автоматика и управление в технических системах” – М: Высшая школа, 1991. – 335 с. : ил.
Черных И.В. SIMULINK: среда создания инженерных приложений / Под общ. Ред. к.т.н. В.Г. Потемкина. – М.: ДИАЛОГ-МИФИ. 2003. – 496 с.
Электротехника: Учебник для неэлектротехнических ВУЗов / Под редакцией Герасимова В.Г. – М: Высшая школа, 1985. – 480 с.
Г. Хан, С. Шапиро. Статистические модели в инженерных задачах. – М: Издательство “Мир”, 1969. 400 с.
Кашин В. М.
Новиков В. Г.