
- •Структуры данных и алгоритмы их обработки (Учебное пособие)
- •Москва 2007
- •1. Структуры данных и алгоритмы 6
- •1.2. Информация и ее представление
- •1.2.1. Природа информации
- •1.2.2. Хранение информации
- •1.2.3. Классификация структур данных
- •1.3. Операции над структурами данных
- •1.4. Порядок алгоритма
- •1.5. Структурность данных и технологии программирования
- •Контрольные вопросы
- •2. Простые структуры данных
- •2.1. Порядковые типы
- •2.2. Целочисленный тип
- •2.3. Символьный тип
- •2.4. Перечисляемый тип
- •2.5. Интервальный тип
- •2.6. Логический тип
- •2.7. Битовый тип
- •2.8. Вещественный тип
- •2.9. Указательный тип
- •Контрольные вопросы
- •3. Объектные типы данных
- •3.1. Объявление и реализация классов
- •Interface
- •Implementation
- •3.2. Директивы видимости
- •3.3. Свойства классов
- •3.4. Структурированная обработка ошибок
- •3.5. Применение объектов
- •Контрольные вопросы
- •4. Статические структуры данных
- •4.1. Векторы
- •4.2. Массивы
- •4.3. Множества
- •4.4. Записи
- •4.5. Таблицы
- •4.6. Операции над статическими структурами
- •4.6.1. Алгоритмы поиска
- •4.6.2. Алгоритмы сортировки
- •Самые медленные алгоритмы сортировки
- •Быстрые алгоритмы сортировки
- •Самые быстрые алгоритмы сортировки
- •Сортировка слиянием
- •Контрольные вопросы
- •5. Полустатические структуры данных
- •5.1. Стеки
- •5.1.1. Стеки в вычислительных системах
- •5.2. Очереди fifo
- •5.2.1. Очереди с приоритетами
- •5.2.2. Очереди в вычислительных системах
- •5.3. Деки
- •5.3.1. Деки в вычислительных системах
- •5.4. Строки
- •5.4.1. Операции над строками
- •5.4.2. Представление строк в памяти
- •3 A b d 8 p q r s t u V w
- •V w ptr nil
- •1 8 П р е д с т а в
- •2 7 ? Л е н и е ?
- •1 8 С т р о к и з
- •1 8 В е н ь я м и
- •1 8 С у п р а в л
- •1 8 Я е м о й д л
- •1 4 И н о й ? ? ? ? nil
- •6.2. Связные линейные списки
- •6.2.1. Машинное представление связных линейных списков
- •Inf next
- •Inf next
- •Inf nil
- •6.2.2. Реализация операций над связными линейными списками
- •Inf next
- •Inf next
- •Inf next
- •Inf next
- •Inf next
- •Inf next
- •Inf next
- •Inf next
- •Inf next
- •Inf next
- •Inf next
- •Inf next
- •6.2.3. Применение линейных списков
- •6.3. Нелинейные разветвленные списки
- •6.3.1. Основные понятия
- •6.3.2. Представление списковых структур в памяти
- •6.3.3. Операции обработки списков
- •6.4. Язык программирования lisp
- •6.5. Управление динамически выделяемой памятью
- •Контрольные вопросы
- •7. Нелинейные структуры данных
- •7.1. Графы и деревья
- •(B) (a) (b) (a)
- •V0 v1 v2 v5 v6 v3 v4 v7 v8 v9 v10 (v0) (v1) (v7) (v8) (v9) (v10) (v3) (v2) (v4) (v5) (v6)
- •7.3. Бинарные деревья
- •7.3.1. Представление бинарных деревьев
- •7.3.2. Прохождение бинарных деревьев
- •7.4. Алгоритмы на деревьях
- •7.4.1. Сортировка с прохождением бинарного дерева
- •7.4.2. Сортировка методом турнира с выбыванием
- •7.4.3. Применение бинарных деревьев для сжатия информации
- •7.4.4. Представление выражений с помощью деревьев
- •7.5. Представление сильноветвящихся деревьев
- •Контрольные вопросы
- •8. Методы ускорения доступа к данным
- •8.1. Хеширование данных
- •8.1.1. Функции хеширования
- •8.1.2. Оценка качества хеш-функции
- •8.1.3. Методы разрешения коллизий
- •8.1.4. Переполнение таблицы и рехеширование
- •8.2. Организация данных для поиска по вторичным ключам
- •8.2.1. Инвертированные индексы
- •8.2.2. Битовые карты
- •Контрольные вопросы
- •Листинги рабочих примеров
- •1. Создание и управление списковыми объектами
- •Interface
- •Implementation
- •Interface
- •Implementation
- •3. Моделирование работы стека
- •Interface
- •Implementation
- •Interface
- •Implementation
- •4. Создание и редактирование бинарных деревьев
- •5. Создание и редактирование сильноветвящихся деревьев
- •Задания для самостоятельной работы
- •Литература
- •144Кафедра Вычислительной Техники и Программирования Московского Государственного Открытого Университета
Контрольные вопросы
Перечислите порядковые типы. Опишите общие операции над порядковыми типами.
Символьный тип. Как строятся кодовые таблицы?
Приведите примеры создания и использования перечисляемого и интервального типа.
Назначение и представление логического и битового типа.
Перечислите наиболее грубые ошибки численных расчетов.
Создание и применение указателей. Виды указателей и операции.
3. Объектные типы данных
Поскольку в основу структурного программирования положены управляющие структуры, структурный подход дает хорошие результаты при сложном управлении и простых структурах данных. В свою очередь объектный подход базируется на структурах данных и предпочтителен, когда сложность построения алгоритмов заключена в выборе организации данных. Объектные типы данных относятся к динамическим структурам, однако, ввиду их большой важности и применения в последующем изложении, они будут рассмотрены отдельно.
3.1. Объявление и реализация классов
Для объявления классов (объектных типов) используется зарезервированное слово class. Определим некоторый класс графических примитивов TFigure следующим образом:
TFigure=class
fColor:Byte;
fThickness: Byte;
fCanvas: TCanvas;
procedure SetColor(Value: Byte);
procedure SetThickness(Value: Byte);
procedure PrepareCanvas;
end;
По принятому соглашению имена классов начинаются с заглавной буквы «T», имена полей данных начинаются с буквы «F», и поля класса объявляются до методов. Класс объединяет данные, представленные атрибутами (полями) и алгоритмы (методы) по их обработке.
В примере к полям данных класса относятся: поле fColor, хранящее код цвета, поле fThickness, задающее толщину линий и поле fCanvas, представляющее полотно, на котором будет происходить отображение графических примитивов.
Методы класса определяют действия, выполняемые над данными. Их совокупность характеризует функциональный аспект поведения класса. Методы представляют собой процедуры и функции, принадлежащие классу. К методам класса относится метод PrepareCanvas, выполняющий подготовку полотна к работе и два метода задания значений полей данных – SetColor и SetThickness.
Таким образом, в одной информационной структуре TFigure оказались объединены как исходные параметры, так и необходимые средства по выполнению их реализации. Такое объединение (сокрытие) данных и методов в качестве собственных ресурсов класса получило название инкапсуляции.
Для окончательного оформления шаблона требуется поместить класс в интерфейсный раздел модуля и дать реализацию всех методов:
unit figures;
Interface
type
TFigure = class
fColor: Byte;
fThickness: Byte;
fCanvas: TCanvas;
procedure SetColor(Value: Byte);
procedure SetThickness(Value: Byte);
procedure PrepareCanvas;
end;
Implementation
procedure TFigure.SetColor(Value: Byte);
begin
if fColor <> Value then
fColor:=Color;
end;
procedure TFigure.SetThickness(Value: Byte);
begin
if fThickness <> Value then
fThickness:=Value;
end;
procedure TFigure.PrepareCanvas;
begin
{ Подготовка полотна для рисования }
end;
end.
Методы SetColor и SetThickness выполняют присвоение внутреннему полю fColor и fThickness значения в том случае, если текущее значение отличается от передаваемого. К полям класса никогда не следует обращаться напрямую, а только посредством специальных методов, обеспечивающих корректность выполнения операции присваивания.
Теперь объявим переменную f класса TFigure:
var
f:TFigure;
Переменную f называют экземпляром класса, объектной ссылкой или просто объектом. Через объект f возможен доступ к методам и полям класса. Однако для начала необходимо создать сам объект. Для этого необходимо вызвать специальную процедуру Create, называемую конструктором:
f:=TFigure.Create;
Конструктор не объявлен в классе TFigure, однако присутствует в нем от класса TObject благодаря специальному механизму наследования классов друг от друга. В результате будет выделена область памяти в размере, необходимом для хранения объекта f. Обратите внимание, конструктор вызывается с помощью ссылки на тип, а не на экземпляр типа, в отличие от методов, которые всегда вызываются с помощью ссылки на экземпляр. Связано это с тем, что объект f на момент вызова конструктора еще не создан.
После создания объекта с ним можно работать:
uses figures;
var
f: TCircle;
begin
f:=TCircle.Create;
f.SetColor($FF);
f.SetThickness(1);
f.PrepareCanvas;
f.Free;
end.
После выполнения методов объект f следует удалить, чтобы он не занимал места в памяти. Удаление выполняет метод Destroy, определенный в классе TObject (базовом классе), но лучше использовать Free, т.к. он инкапсулирует вызов Destroy: в начале определяется, существует ли объект и только затем выполняется вызов Destroy. В противном случае метод Free ничего не делает.
Класс Figure можно модифицировать, например, явно добавить к методам конструктор Create с помощью зарезервированного слова constructor и деструктор Destroy с помощью зарезервированного слова destructor:
TFigure = class
...
constructor Create;
destructor Destroy;
end;
В конструкторе присваиваются полям начальные значения и создается объект полотна:
constructor TFigure.Create;
begin
fColor:=$FF;
fThickness:=1;
fCanvas:=TCanvas.Create;
end;
В деструкторе обычно выполняются действия, связанные с освобождением задействованных в течение работы объекта ресурсов:
destructorTFigure.Destroy;
begin
{ Освобождение ресурсов, используемых в работе объекта }
fCanvas.Free;
end;