- •Содержание
- •Теоретические методы реализации задачи
- •Постановка задачи, исходные данные
- •Описание математических функций и методов
- •Реализация методов
- •Основные понятия, цели и задачи
- •Описание интерфейса программы
- •Диалоговое окно программы разделено на 3 части:
- •Описание результатов решения
- •Тестирование
- •Список использованной в работе литературы и интернет ресурсов
- •Приложение
Содержание
1.Теоретические методы реализации задачи 2
1.1.Постановка задачи, исходные данные 2
1.2.Описание математических функций и методов 2
2.1.Основные понятия, цели и задачи 8
2.2.Описание интерфейса программы 8
Диалоговое окно программы разделено на 3 части: 8
2.3.Описание результатов решения 10
2.4.Тестирование 11
3.Список использованной в работе литературы и интернет ресурсов 12
Приложение 13
Теоретические методы реализации задачи
Постановка задачи, исходные данные
Целью
данной работы является вычисления
выражения:

где:
![]()
![]()
![]()
![]()
Исходные данные:
σy=15; σz=5;R0=20м;Rmax=1, 15, 45
Для вычисления интеграла данного выражения был применён метод Симпсона. Подынтегральной функцией является функция Бесселя 1-го рода нулевого порядка. Так как коэффициент kэтой функции может принимать нецелые значения, для подсчёта факториала этого коэффициента (k!) применима Гамма-функция. Ниже представлено теоретическое описание функций и методов, используемых в данной работе.
Описание математических функций и методов
Гамма-функция
Гамма-функция,
Г-функция, Г-функция Эйлера, эйлеров
интеграл 2-го рода, — одна из важнейших
трансцендентных функций математического
анализа, распространяющая понятие
факториала
на случай комплексных значенийz.
Г.-ф. впервые введена Леонардом Эйлером
(1729); она определяется формулой
![]()
Если действительная часть числа z положительна, то можно также пользоваться формулой
(Эйлеров
интеграл 2-го рода).
Если n натуральное число, то Γ(n) = (n − 1)! Интеграл
![]()
наз. неполной гамма-функцией. Основные соотношения для Г.-ф.:
Γ(z + 1) = zΓ(z) (функциональное уравнение);
(формула
дополнения), отсюда
![]()
где
при
(формула Стирлинга).
В
действительной области Γ(x) > 0 для x >
0 и принимает знак ( − 1)k
+ 1
на участках
![]()
Для всех действительных x справедливо неравенство
![]()
т.
е. все ветви как | Γ(x) | , так и ln | Γ(x) | —
выпуклые функции. Свойство логарифмической
выпуклости определяет Г.-ф. среди всех
решений функционального уравнения Γ(1
+ x) = xΓ(x) с точностью до постоянного
множителя. Для положительных x Г.-ф. имеет
единственный минимум при
, равный![]()
Локальные
минимумы функции | Γ(x) | при
образуют последовательность, стремящуюся
к нулю. Г.-ф. представляет собой мероморфную
функцию с простыми полюсами в точках
Функция 1 / Γ(z) является целой функцией
1-го порядка максимального типа:
где
C — постоянная Эйлера. Эта формула
послужила отправным пунктом для создания
теории разложения целых функций в
бесконечные произведения. При этом
асимптотически
где
![]()
Через Г.-ф. выражается большое число определённых интегралов, бесконечных произведений и сумм рядов. Она играет важную роль в теории специальных функций — цилиндрических, гипергеометрических и др. Г.-ф. и её свойства используются также в аналитической теории чисел.
ПРАКТИЧЕСКАЯ ЧАСТЬ
Для вычисления гамма-функции используется аппроксимация её логарифма. Для аппроксимации гамма-функции на интервале x>0 используется следующая формула (для комплексных z):
Г(z+1)=(z+g+0.5)z+0.5exp((z+g+0.5))
[a0+a1/(z+1)+a2/(z+2)+...+an/(z+n)+eps]
Эта формула похожа на аппроксимацию Стирлинга, но в ней имеется корректирующая серия. Для значений g=5 и n=6, проверено, что величина погрешности не превышает 2*10-10. Более того, погрешность не превышает этой величины на всей правой половине комплексной плоскости: z > 0.
Для получения (действительной) гамма-функции на интервале x>0 используется рекуррентная формула Г(z+1)=zГ(z) и вышеприведенная аппроксимация Г(z+1). Кроме того, можно заметить, что удобнее аппроксимировать логарифм гамма-функции, чем ее саму. Во-первых, при этом потребуется вызов только одной математической функции - логарифма, а не двух - экспоненты и степени (последняя все равно использует вызов логарифма), во-вторых, гамма-функция - быстро растущая для больших x, и аппроксимация ее логарифмом снимает вопросы переполнения.
Для аппроксимации Ln(Г(х) - логарифма гамма-функции - получается формула:
log(Г(x))=(x+0.5)log(x+5.5)-(x+5.5)+ log(C0(C1+C2/(x+1)+C3/(x+2)+...+C7/(x+8))/x)
Значения коэффициентов Ck - табличные данные.
Сама гамма-функция получается из ее логарифма взятием экспоненты.
Функции Бесселя
Функции Бесселя в математике — семейство функций, являющихся каноническими решениями дифференциального уравнения Бесселя:
![]()
где α — произвольное вещественное число, называемое порядком.
Наиболее часто используемые функции Бесселя — функции целых порядков. Хотя α и -α порождают одинаковые уравнения, обычно договариваются о том, чтобы им соответствовали разные функции (это делается, например, для того, чтобы функция Бесселя была гладкой по α).
Поскольку приведённое уравнение является линейным дифференциальным уравнением второго порядка, у него должно быть два линейно независимых решения. Однако в зависимости от обстоятельств выбираются разные определения этих решений. Одно из них – функция Бесселя 1-го рода, нулевого порядка или ,как её ещё называют, цилиндрическая функция нулевого индекса.
Цилиндрическая функция нулевого индекса имеет вид:
.
Метод Симпсона
Многие инженерные задачи, задачи физики, геометрии и многих других областей человеческой деятельности приводят к необходимости вычислять определённый интеграл.

Суть
приёма заключается в приближении
подынтегральной функции на отрезке
интерполяционным многочленом второй
степени
, то есть приближение графика функции
на отрезке параболой. Метод Симпсона
имеет порядок погрешности и алгебраический
порядок точности. Метод Симпсона
относится к приёмам численного
интегрирования. Получила название в
честь британского математика Томаса
Симпсона (1710—1761)
Разобьем
отрезок интегрирования [a,b]
на четное число n
равных частей с шагом h.
На каждом отрезке
подынтегральную функцию f(x)
заменим интерполяционным многочленом
второй степени:
![]()
Коэффициенты этих квадратных трехчленов могут быть найдены из условий равенства многочлена в точках xi соответствующим табличным данным yi. В качестве j i(x) можно принять интерполяционный многочлен Лагранжа второй степени, проходящий через точки Mi-1(xi-1,yi-1), Mi(xi,yi), Mi+1(xi+1, yi+1):
![]()
![]()
Элементарная площадь si может быть вычислена с помощью определенного интеграла.
Учитывая равенства xi+1 - xi = xi - xi-1 = h, получаем

![]()
Проведя такие вычисления для каждого элементарного отрезка [xi-1, xi+1], просуммируем полученные выражения:
![]()
Данное выражение для S принимается в качестве значения определенного интеграла:

Полученное соотношение называется формулой Симпсона.
С

