Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика лекции / Лекция7.doc
Скачиваний:
84
Добавлен:
19.03.2015
Размер:
626.69 Кб
Скачать

Условия наблюдения интерференции на тонких пленках

Итак, при падении на пластинку плоской волны образуются две отраженные волны, разность хода которых определяется формулой (7.1). Выясним условия, при которых эти волны могут интерферировать. Рассмотрим случай с плоскопараллельной пластинкой.

Рис.7.6

Обе плоские отраженные волны распространяются в одном направлении, образующем с нормалью к пластинке угол, равный углу падения . Эти волны смогут интерферировать, если будут соблюдены условия как временной, так и пространственной когерентности.

Для того чтобы имела место временная когерентность, разность хода (7,1) не должна превышать длину когерентности, равную .Следовательно, должно соблюдаться условие

При нормальном падении световой волны на поверхность пленки

В полученном соотношении половиной можно пренебречь по сравнению с . Поэтому можно написать

(7.6)

(удвоенная, толщина пластинки должна быть меньше длины когерентности).

Таким образом, отраженные волны будут когерентными только в том случае, если толщина пластинки hне превышает- величины, определяемой соотношением (7.6)). Положив=5000и=20, получим предельное значение толщины, равное

Теперь рассмотрим условия соблюдения пространственной когерентности. Поставим на пути отраженных пучков экран Э (рис. 7.6). Приходящие в точку Р лучи 1 и 2 отстоят друг от друга на расстоянии DC. Из рис 7.6 видно, что. Если пленка освещается солнечным светом, а угловой размер солнца составляет0,01рад., то для выполнения условий пространственной когерентности необходимо, чтобы. Если предположить, что угол падения составляет 45и длина волны=5000, тоh<0,05мм. Для угла падения порядка 10° лространственная когерентность будет сохраняться при толщине пластинки, не превышающей 0,05мм. Таким образом, мы приходим к выводу, что вследствие ограничений, накладываемых временной и пространственной когерентностями, интерференция при освещении пластинки солнечным светом наблюдается только в том случае, если толщина пластинки не превышает нескольких сотых миллиметра. При освещении светом с большей степенью когерентности интерференция наблюдается и при отражении от более толстых пластинок или пленок, например, при использовании лазерного излучения интерференцию можно наблюдать на пленках толщиной больше 2см.

Просветленная оптика

При прохождении световой волны через линзы на каждой из поверхностей линзы световой поток частично отражается. В сложных оптических системах, где много линз или призм проходящий световой поток значительно уменьшается, кроме того, появляются блики. В перископах подводных лодок отражается до 50% входящего в них света. Для устранения этих дефектов оптических систем применяется прием, который называется просветлением оптики. Сущность приема заключается в том, что оптические поверхности покрываются тонкими пленками, создающими интерференционные явления. В просветленной оптике для устранения отражения света на каждую свободную поверхность линзы наносится тонкая пленка вещества с показателем преломления иным, чем у линзы. Толщина пленки подбирается так, чтобы волны отраженные от обеих ее поверхностей, погашали друг друга. Особенно хороший результат достигается в том случае, когда показатель преломления пленки удовлетворяет условию

(7.7)

Где nпл- показатель преломления пленки, который должен быть меньше показателя преломления линзы,- показатель преломления среды, в которой находится оптическая система,- показатель преломления линзы.

Соотношение (7.7) показывает, что диэлектрическая пленка, нанесенная на линзу, должна иметь показатель преломления меньше показателя преломления линзы и больше показателя преломления среды, в этом случае теряется половина длины волны на нижней и верхней отражающей поверхности. Разность хода отраженных световых волн от верхней поверхности пленки и от линзы определяется

,

для нормально падающих лучей

Назначение пленки заключается в гашении отраженного света, поэтому должно выполняться условие минимума

Отсюда определяем толщину просветляющей пленки

(7.8)

Условие (7.8) предъявляет очень жесткие условия к толщине просветляющей пленки, так как если она будет равна

, то присутствие покровного слоя наоборот увеличит коэффициент отражения света.

При соблюдении условий (7.7) и (7.8) отражение света не происходит, и световой поток проходит сквозь оптическую поверхность без потерь.

Толщина просветляющей пленки, найденная по формуле (7.8) будет действительна лишь для вполне определенной длины волны, а белый свет содержит все длины волн видимого диапазона. Однако, при m=0

можно подобрать однослойные пленки, оказывающие хорошее просветляющее действие почти на весь видимый участок спектра. Обычно просветление проводят для средней ( желто-зеленой) области видимого света, подбирая такой диэлектрик, показатель преломления которого удовлетворяет условию (7.7). Для краев видимого спектра ( красный и фиолетовый свет) коэффициент отражения заметно отличается от нуля. Именно поэтому просветленные объективы кажутся в отраженном свете пурпурными, что соответствует смешению красного и фиолетового цветов. Для того, чтобы не происходило отражение света от оптических поверхностей в широком диапазоне длин волн и углов падения, применяются многослойные просветляющие покрытия.

Просветляющее покрытие образуется на поверхности линзы путем ее химической обработки (протравление в кислоте) или путем нанесения пленок фторидов при испарении в вакууме.

Соседние файлы в папке Физика лекции