Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика лекции / Лекция8.doc
Скачиваний:
145
Добавлен:
19.03.2015
Размер:
353.28 Кб
Скачать

Дифракция на диске.

Пусть свет из точки источника (рис. 8.15) освещает непрозрачный диск радиуса, за которым на прямой, перпендикулярной плоскости диска и проведенной через его центр, располагается точка наблюдения. Как и выше, будем считать, что размер диска во много раз меньше расстояний от диска до источникаи от диска до точки наблюдения.

Предположим, что диск из точки наблюдения 'закрывает'зон Френеля. Тогда амплитуда светав точке наблюдения будет равна алгебраической сумме амплитуд волноткрытых зон Френеля:

Учитывая, что амплитуды соседних зон Френеля примерно равны друг другу, однотипные выражение в скобках можно положить равными нулю, и тогда получим

(8.15)

Рис.8.15

Отсюда следует, что в центре дифракционной картины, создаваемой диском, всегда наблюдается светлое пятно, независимо от размеров диска. В истории физики это свойств зон Френеля явилось доказательством волновой природы света. С точки зрения современников Френеля наблюдение светлого пятна в центре геометрической тени препятствия, освещаемого светом, казалось абсурдным, что и послужило основанием для Пуассона (1781-1853) возразить против волновой природы света. Для проверки этого возражения Араго (1786-1853) поставил опыт, которым действительно наблюдалось светлое пятно в центре геометрической тени диска (рис. 8.16), освещаемого светом, получившее название пятно Араго- Пуассона. Справедливости ради, необходимо отметить, что наблюдение пятна было отмечено задолго до опыта Араго - ещё в 1713г. Делилем, а 1723г. Моральди. Однако, поскольку природа этого явления была непонятна, то наблюдения оказались незамеченными.

Дифракционная картина от диска, наблюдаемая на экране (рис8.16), имеет характер чередующихся тёмных и светлых колец, в центре которых находится светлое пятно.

Пусть для определённости диск закрывает только одну зону Френеля. Тогда в центре дифракционной картины диска амплитуда волны определяется разностью амплитуд волны источника, когда нет никакого экрана, и волны от отверстия, имеющего размер первой зоны Френеля. Учитывая, что амплитуда волны от первой зоны Френеля в два раза больше, чем амплитуда волны источника в точке наблюдения, получаем, что интенсивность волны за диском равна интенсивности волны источника в отсутствии диска.

Если же диск закрывает две зоны Френеля, то в центре дифракционной картины диска амплитуда волны определяется амплитудой волны источника, когда нет никакого экрана, поскольку амплитуду волны, создаваемой отверстием того же диаметра, что и диск, приближённо можно полагать равной нулю. Проведенные

Рис.8.16

рассуждения, очевидно, справедливы для диска, открывающего произвольное число (не очень большое) чётных или нечётных зон Френеля.

Таким образом, амплитуда волны в центре дифракционной картины от диска любого размера равна половине амплитуды волны от первой открытой зоны Френеля, что совпадает с результатом проведенных выше расчётов. На периферии дифракционной картины от диска распределение интенсивности в основном определяется амплитудой волны источника, на которую 'накладываются' затухающие по мере удаления от центра картины колебания волн от частично открытых зон Френеля отверстием в непрозрачном экране того же диаметра, что и рассматриваемый диск.

Рассмотрим вид дифракционной картины в зависимости от размера диска. Если размер диска во много раз меньше первой зоны Френеля, то наблюдается практически равномерное освещение экрана - диск как бы не отбрасывает тени. Если размер диска закрывает 'много' зон Френеля, в центре дифракционной картины светлого пятна практически не видно т.к. , освещённость картины в области геометрической тени практически равна нулю, а дифракционные кольца наблюдаются в узкой области на границе свет тень.

Заключение

При построении векторных диаграмм необходимо помнить о векторном характере амплитуды. Сложение амплитуд лучше производить методом треугольника. Зоны Френеля делятся на подзоны таким образом, чтобы фаза вторичных волн в подзоне оставалась постоянной. В дифракции Френеля амплитуда является убывающей величиной и это необходимо учитывать при построении векторной диаграммы. Распределение интенсивности при дифракции на круглом отверстии зависит от того четное или нечетное число зон Френеля укладывается в это отверстие. При нечетном числе зон Френеля в центре дифракционной картины всегда наблюдается максимум, а при четном –минимум.

В дифракции Фраунгофера используются плоские волны, следовательно, амплитуда не зависит от расстояния, пройденного волной. Поэтому распределение интенсивности отличается от распределения в дифракции Френеля.

Соседние файлы в папке Физика лекции