
(8.12) Зонные пластинки.
Мы нашли выражение для радиусов зон Френеля сферических световых волн
(8.13)
Используя, это выражение , можно приготовить экран, состоящий из последовательно чередующихся прозрачных и непрозрачных колец, радиусы которых удовлетворяют условию 8.13 для заданных значений a, b и . Приготовленная таким образом пластинки носит название амплитудной зонной пластинки. Колебания от четных и нечетных зон Френеля находятся в противофазе и, следовательно, взаимно ослабляют друг друга. Если поставить на пути световой волны приготовленную пластинку, которая перекрывала бы все четные или нечетные зоны, то интенсивность света в точке Р резко возрастает. Такая пластинка действует подобно собирающей линзе.
Рис.8.8
Еще большего эффекта можно достичь, не
перекрывая четные (или нечетные) зоны,
а изменяя фазу их колебаний на.
Это можно осуществить о помощью
прозрачной пластинки, толщина которой в местах, соответствующих четным или нечетным зонам, отличается на надлежащим образом подобранную величину. Такая пластинка называется фазовой зонной пластинкой. По сравнению с перекрывающей зоны амплитудной зонной пластинкой, фазовая дает дополнительное увеличение амплитуды в два раза, а интенсивности света — в четыре раза.
Для фазовой пластинки результирующую амплитуду светового вектора можно записать следующим образом:
Метод векторных диаграмм
Теперь решим задачу о распространении света от источника S к точке Р методом графического сложения амплитуд. Разобьем волновую поверхность на кольцевые зоны, аналогичные зонам Френеля, но гораздо меньшие по ширине (разность хода от краев зоны до точки Р составляет одинаковую для всех зон малую долю ). Колебание, создаваемое в точке Р каждой из зон, изобразим в виде вектора, длина которого равна амплитуде колебания, а угол, образуемый вектором с направлением, принятым за начало отсчета, дает начальную фазу колебания Амплитуда колебаний, создаваемых такими зонами в точке Р, медленно убывает при переходе от зоны к зоне. Каждое следующее колебание отстает от предыдущего по фазе на одну и ту же величину.
Рис.8.9
Если бы амплитуды, создаваемые отдельными зонами, были одинаковыми, конец последнего из изображенных на рис. 8.9 векторов совпал бы с началом первого вектора. В действительности значение амплитуды, хотя и очень слабо, но убывает, вследствие чего векторы образуют не замкнутую фигуру, а ломаную спиралевидную линию. В пределе при стремлении ширины кольцевых зон к нулю (количество их будет при этом неограниченно возрастать) векторная диаграмма примет вид спирали, закручивающейся к точке С (рис. 8.10).
Рис.8.10
Рис.8.10
раз больше вектора ОС. Следовательно,
интенсивность света, создаваемая
внутренней половиной первой зоны
Френеля, в два раза превышает интенсивность,
создаваемую всей волновой поверхностью.