
- •Кафедра электронных приборов (ЭП)
- •Ю.Р. Саликаев
- •Математические модели и САПР элеКТрОнныХ приборов и устройств
- •содержание
- •1. Введение
- •1.1. Цель и предмет автоматизации проектирования (АП)
- •1.2. История развития САПР
- •1.3. Основные особенности построения САПР
- •1.4. Аспекты и иерархические уровни проектирования
- •2. Процесс проектирования
- •2.1. Стадии и этапы проектирования
- •2.2. Принципы итерационности проектирования, совместимости, типизации и развития
- •2.3. Нисходящее и восходящее проектирование
- •2.4. Внешнее и внутреннее проектирование
- •2.5. Типовые маршруты и процедуры проектирования
- •2.6. Подходы к верификации
- •2.7. Классификация проектных процедур
- •2.8. Принципы построения маршрутов проектирования
- •2.9. Примеры маршрутов проектирования
- •2.10. Режимы проектирования в САПР
- •3. КЛАССИФИКАЦИЯ САПР
- •Таблица 1.1
- •Классификационные группировки САПР по типу объекта
- •Наименование
- •Таблица 1.2
- •Классификационные группировки САПР по разновидности
- •Наименование
- •Таблица 1.3
- •Классификационные группировки САПР по сложности объекта
- •Наименование
- •Число составных частей
- •Таблица 1.4
- •Классификационные группировки САПР по уровню автоматизации
- •Наименование
- •Таблица 1.5
- •Классификационные группировки САПР по комплексности
- •Наименование
- •Таблица 1.6
- •Классификационные группировки САПР по характеру
- •Наименование
- •Таблица 1.7
- •Классификационные группировки САПР по количеству выпускаемых
- •Наименование
- •Таблица 1.8
- •Классификационные группировки САПР по числу уровней
- •Наименование
- •Рис. 2. Классификация группы САПР
- •Виды обеспечений
- •Подсистема «А»
- •Подсистема «Б»
- •Подсистема «Н»
- •3.1. Состав и структура САПР
- •3.2. Математическое обеспечение (МО) САПР
- •3.3. Техническое обеспечение (ТО) САПР
- •3.3.1. Состав ТС САПР
- •3.3.2. Уровни ТО САПР
- •3.4. Программное обеспечение (ПО) САПР
- •3.4.1. Свойства ПО САПР
- •3.4.2. Структура ПО САПР
- •Рис. 4. Структура общесистемного ПО САПР
- •3.4.3. Подходы к созданию общесистемного ПО
- •3.4.4. Специализированное ПО САПР. Частота использования программ
- •3.4.5. Показатели качества программ проектирования
- •3.4.6. Пакеты прикладных программ (ППП), программные системы и комплексы
- •3.4.7. Основные принципы проектирования ПО САПР
- •3.5. Лингвистическое обеспечение САПР
- •3.5.1. Языки программирования
- •3.5.2. Языки проектирования
- •3.5.3. Языковые процессоры
- •3.5.4. Структура трансляторов
- •3.6. Информационное обеспечение САПР
- •3.6.1. Состав ИФ
- •3.6.2. Способы ведения ИФ
- •3.6.3. Базы знаний (БЗ)
- •3.7. Методическое обеспечение САПР
- •3.8. Организационное обеспечение САПР
- •4.1. Требования к математическим моделям
- •4.2. Классификация ММ
- •Структурные, функциональные
- •4.2.1. Функциональные ММ. Непрерывные ММ
- •4.2.2. Дискретные математические модели
- •4.2.3. Методика получения ММ элементов
- •4.3. Многовариантный анализ
- •5.1. Формы представления моделей элементов схем
- •5.2. Математические модели компонентов базовых эквивалентных схем
- •5.3. Понятие о многополюсниках
- •5.4. Зависимые источники
- •В матричной форме уравнения имеют вид
- •Далее рассмотрим два важных вопроса, касающихся преобразования моделей электрических схем.
- •5.5. Преобразования Тевенина и Нортона
- •5.6. Нормирование элементов схемы
- •5.7. Формирование уравнений на основе метода узловых потенциалов
- •5.8. Модели компонентов электронных схем
- •5.8.1. Подходы к синтезу моделей
- •5.8.2. Модель диода с барьером Шоттки
- •5.8.3. Модель диода на p-n-переходе
- •5.8.4. Модель диода для приращений
- •Рис. 22. Модель диода для приращений
- •5.8.5. Одномерная модель биполярного транзистора
- •5.8.6. Схемные модели биполярного транзистора
- •Рис.24. Инжекционный вариант модели Эберса-Молла
- •Рис. 25. Передаточный вариант модели Эберса-Молла
- •Введя обозначение
- •Рис.26. Нелинейная гибридная П-модель Эберса-Молла
- •Рис. 27. Общая модель Эберса-Молла
- •Рис. 28. Представление уравнения (97) схемой с двумя управляемыми
- •источниками тока
- •5.8.7. Схемные модели полевого транзистора
- •Рис. 31. Модель полевого транзистора с управляющим p-n-переходом
- •Типичные значения ее параметров даны в таблице 5.1.
- •5.9. Макромодели
- •Рис. 35. Макромодель 1-го уровня для ОУ
- •5.9.1. Блочный метод макромоделирования
- •5.9.2. Идентификация параметров моделей элементов электронных схем
- •5.9.3. Макромодель операционного усилителя
- •Оно содержит нелинейный источник тока, управляемый напряжением, благодаря чему максимальный ток через конденсатор не превышает Im . Поэтому скорость изменения напряжения на конденсаторе ограничена:
- •скорости нарастания напряжения
- •6. МО ПРОЦЕДУР СИНТЕЗА ПРОЕКТНЫХ РЕШЕНИЙ
- •6.1. Классификация процедур структурного синтеза
- •6.2. Решение задач структурного синтеза. Дедуктивные системы
- •Рис. 42. Пример соответствующих друг другу описаний в задачах
- •6.3. Подходы к постановке задач параметрической оптимизации
- •6.4. Постановка задач оптимизации при внутреннем проектировании
- •Рис. 44. Оптимальное совмещение областей работоспособности
- •6.5. Постановка задач оптимизации при внешнем проектировании
- •6.6. Содержание методов оптимизации в САПР
- •6.7. Методы безусловной оптимизации
- •6.7.1. Методы нулевого порядка
- •Рис. 46. Овражная функция
- •Рис. 47. Траектория поиска по методу конфигураций
- •6.7.2. Методы первого порядка
- •6.8. Методы условной оптимизации
- •Рис. 49. Целевая функция в методе внешней точки
- •6.9. Методы дискретной оптимизации
- •литература

(x )
X
допустимая область
РИС. 49. ЦЕЛЕВАЯ ФУНКЦИЯ В МЕТОДЕ ВНЕШНЕЙ ТОЧКИ
6.9. Методы дискретной оптимизации
Задача дискретного математического программирования – это задача (116), но с дополнительными условием дискретности пространства управляемых параметров, т.е. где G – счетное множество точек. В ряде случаев лишь часть управляемых параметров дискретна. Тогда задача оптимизации является задачей частично дискретного программирования. Обычно для параметров x i водятся двусторонние прямые ограничения (123), тогда G – конечное множество и задача дискретного программирования становится комбинаторной.
Дискретная оптимизация сложнее непрерывной. Сложность точного решения комбинаторной задачи является экспоненциальной. Эффективные точные методы дискретной оптимизации существуют лишь для отдельных классов задач, поэтому для задач целочисленного линейного программирования и нелинейного дискретного программирования в САПР применяются
179
приближенные методы локальной оптимизации и ветвей и границ.
Метод локальной оптимизации характеризуется тем, что один его шаг заключается в исследовании -окрестности, текущей точки поиска X k при значении , обеспечивающем нахождение в этой окрестности по крайней мере еще одной точки. Если F(X k ) F(X j ), где X j – любая точка в исследуемой - окрестности, то X k принимается в качестве точки локального экстремума. Если же найдется точка с лучшим значением целевой функции, то она становится новой текущей точкой поиска и происходит переход к следующему шагу. Для реализации метода локальной оптимизации нужно установить способы выбора начальной точки поиска, величины , правила возможного изменения в процессе поиска и т.п. При больших увеличивается трудоемкость поиска, при малых снижается надежность определения глобального экстремума.
Метод ветвей и границ заключается в разбиении конечного множества, на котором ищется экстремум, на несколько подмножеств и в выяснении перспективности каждого из них. Если подмножество неперспективно, оно исключается из рассмотрения. Если в подмножестве может находиться экстремум, оно подвергается дальнейшему разбиению и исследованию. Разбиения и исследования продолжаются до тех пор, пока не будет выявлена единственная наилучшая точка. Исключение из рассмотрения неперспективных точек обусловливает направленность перебора. В большинстве задач дискретного программирования оценки перспективности подмножеств точек могут быть только приближенными. Если применяются излишне оптимистические оценки перспективности, перебор начинает приближаться к полному, увеличиваются потери на поиск. Если правила выбора перспективных ветвей излишне пессимистические, то снижается надежность определения экстремума.
Идеи метода ветвей и границ находят применение во многих алгоритмах решения комбинаторных задач в процессе автоматизированного проектирования.
180
литература
1. Норенков И.П., Маничев В.Б. Основы теории и проектирования САПР: Учеб. для втузов по спец. «Вычислительные машины комплексы, системы и сети». М.: Высш. шк., 1990. 335 с.
2. САПР: Учеб. пособ. для втузов / Под ред. И.П. Норенкова. Минск: Вышейш. шк., 1987. Кн. 1: Принципы построения и структура / И.П. Норенков.1987. 127 с.; Кн. 2: Технические средства и ОС / Д.М. Жук и др. 1988. 155 с.; Кн. 4: Математические модели технических объектов / В.А. Трудоношин, Н.В. Пивоварова. 1988. 158 с.; Кн. 7: Лабораторный практикум / Т.И. Булдакова и др. 1988. 143 с.; Кн. 8: Сборник примеров и задач / Д.М. Жук и др. 1988. 141 с.
181
3.Бугров В. Г. Основы построения САПР: Конспект лекций. Калинин: Калининский гос. ун-т. 1982. 46 с.
4.Разработка САПР: В 10 кн. / Под ред. А.В. Петрова. М.: Высш. шк., 1990. Кн. 1: Проблемы и принципы создания САПР / А.В. Петров, В.М. Черненький. 1990. 144 с.
5.Влах И., Сингхал К. Машинные методы анализа и проектирования электронных схем: Пер. с англ. М.: Радио и связь, 1988. 560 с.
6.Самарский А.А., Гулин А.В. Численные методы: Учеб. пособ. для вузов.
М.: Наука, 1989. 432 с.
7.Очков В.Ф. Mathcad PLUS 6.0 для студентов и инженеров. – М.: Компьютер-Пресс, 1996. – 238 с.
8.Дьяков В.П., Абраменкова Н.В. Mathcad 7.0 в математике, физике и в Internet. – М.: Нелидж, 1998. – 352 с.
9.Дьяков В.П. Mathcad 2001: Учебный курс. – СПб.: Питер, 2001. – 621 с.
10.Карлащук В.Н. Электронная лаборатория на IBM РС. Программа Electronic Workbench и ее применение. – М.: СОЛОН-Р, 2000. – 506 с.
182