
- •Физика металлов
- •Введение
- •I. Строение веществ
- •1.1. Межатомное взаимодействие
- •1.2. Типы химических связей
- •1.3. Кристаллическая структура твердых тел
- •1.4. Дефекты кристаллических решеток
- •1.4.1. Точечные дефекты решетки
- •1.4.2. Линейные дефекты кристаллической решетки
- •1.4.3. Поверхностные дефекты кристаллической решетки
- •1.4.4. Объёмные дефекты кристаллической решетки
- •1.4.5. Энергетические дефекты кристаллической решетки
- •1.5. Основы теории сплавов
- •1.6. Диаграммы состояния сплавов и закономерности Курнакова
- •1.7. Строение электронных зон. Проводники, диэлектрики и полупроводники
- •II. Кристаллизация металлов
- •2.1. Самопроизвольная кристаллизация
- •2.2. Несамопроизвольная кристаллизация
- •2.3. Получение монокристаллов
- •2.4. Аморфное состояние металлов
- •2.5. Полиморфизм
- •III. Проводниковые материалы
- •3.1. Материалы высокой электропроводности
- •3.2. Материалы высокого удельного сопротивления
- •3.2.1. Сплавы на основе меди
- •3.2.2. Никель-хромовые сплавы
- •3.2.3. Железохромалюминиевые сплавы
- •3.2.4. Сплавы на основе благородных металлов
- •3.3. Материалы электрических контактов
- •3.3.1. Зажимные контакты
- •3.3.2. Цельнометаллические контакты
- •3.3.3. Материалы разрывных контактов
- •3.3.4. Материалы скользящих контактов
- •IV. Магнитные материалы
- •4.1. Магнитные свойства твердых тел
- •4.1.1. Природа ферромагнетизма
- •4.1.2. Доменная структура ферромагнетиков
- •4.1.3. Кривая намагничивания
- •4.2. Основные классы магнитных материалов
- •4.2.1. Промышленные магнитомягкие материалы
- •4.2.2. Магнитомягкие материалы для работы в слабых полях
- •4.2.3. Магнитомягкие материалы для работы в высокочастотных полях
- •4.3. Магнитотвердые материалы
- •4.3.1. Промышленные магнитотвердые материалы
- •4.3.2. Дисперсионно твердеющие сплавы
- •4.3.3. Деформируемые магнитотвердые материалы
- •4.3.4. Магнитотвердые ферриты
- •4.3.5. Высококоэрцитивные магниты
- •Список литературы
2.2. Несамопроизвольная кристаллизация
В реальных условиях процессы кристаллизации и характер образующейся структуры в значительной мере зависят от имеющихся готовых центров кристаллизации. Такими центрами, как правило, являются тугоплавкие частицы неметаллических включений, оксидов, интерметаллических соединений, образуемых примесями. К началу кристаллизации центры находятся в жидком металле в виде твердых включений. При кристаллизации атомы металла откладываются на активированной поверхности примеси, как на готовом зародыше. Такая кристаллизация называется несамопроизвольной или гетерогенной. При несамопроизвольной кристаллизации роль зародышей могут играть и стенки формы.
Наличие готовых центров кристаллизации приводит к уменьшению размера кристаллов при затвердевании. Эффект измельчения структуры значительно увеличивается при соблюдении структурного и размерного соответствия примесной фазы с основным металлом, которое способствует сопряжению их кристаллических решеток.
В жидком металле могут присутствовать и растворенные примеси, которые также вызывают измельчение структуры. Адсорбируясь на поверхности зарождающихся кристаллов, они уменьшают поверхностное натяжение на границе раздела жидкость - твердая фаза и линейную скорость роста кристаллов. Это способствует уменьшению Акр и появлению новых зародышей, способных к росту. Примеси, понижающие поверхностное натяжение, называют поверхностно-активными.
2.3. Получение монокристаллов
Большое научное и практическое значение имеют монокристаллы. Монокристаллы отличаются минимальными структурными несовершенствами. Получение монокристаллов позволяет изучать свойства металлов, исключив влияние границ зерен. Применение в монокристаллическом состоянии германия и кремния высокой чистоты дает возможность использовать их полупроводниковые свойства и свести к минимуму неконтролируемые изменения электрических свойств.
Монокристаллы можно получить, если создать условия для роста кристалла только из одного центра кристаллизации. Существует несколько методов, в которых использован этот принцип. Важнейшими из них являются методы Бриджмена и Чохральского.
а б
Рис. 2.5. Схемы установок для выращивания монокристаллов по методам Бриджмена (а) и Чохральского (б)
Для непрерывного роста монокристалла необходимо выдвигать тигель из печи со скоростью, не превышающей скорость роста кристаллов данного металла.
Метод Чохральского (рис. 2.5,б) состоит в вытягивании монокристалла из расплава. Для этого используется готовая затравка 2 – небольшой образец, вырезанный из монокристалла по возможности без структурных дефектов. Затравка вводится в поверхностный слой жидкого металла 4, имеющего температуру чуть выше температуры плавления. Плоскость затравки, соприкасающаяся с поверхностью расплава, должна иметь кристаллографическую ориентацию, которую желательно получить в растущем монокристалле 3 для обеспечения наибольших значений тех или иных свойств. Затравку выдерживают в жидком металле для оплавления и установления равновесия в системе жидкость-кристалл. Затем затравку медленно, со скоростью, не превышающей скорости кристаллизации, удаляют из расплава. Тянущийся за затравкой жидкий металл в области более низких температур над поверхностью ванны кристаллизуется, наследуя структуру затравки. Для получения симметричной формы растущего монокристалла и равномерного распределения примесей в нем ванна 5 с расплавом вращается со скоростью до 100 об/мин, а навстречу ей с меньшей скоростью вращается монокристалл.
Диаметр растущего монокристалла зависит от скорости выращивания и температуры расплава. Увеличение скорости выращивания ведет к выделению большей теплоты кристаллизации, перегреву расплава и уменьшению диаметра монокристалла, и, наоборот, уменьшение скорости выращивания приводит к уменьшению количества теплоты кристаллизации, понижению температуры расплава и увеличению диаметра монокристалла.