Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
130
Добавлен:
18.03.2015
Размер:
2.37 Mб
Скачать
  1. Основные параметры турбины. Способ охлаждения деталей турбины.

К числу основных параметров элементарной ступени осевой турбины, как и ранее для осевого компрессора, относятся две группы параметров. Первая группа – геометрические и газодинамические (в том числе кинематические), параметры профиля, скорости потока, числа М, углы поворота, углы атаки и отставания, конфузорность течения и др. Ко второй группе относятся специфические параметры, введенные и используемые в теории турбомашин – степень реактивности, коэффициент теоретической работы и коэффициент расхода. Рассмотрим последовательно эти основные параметры элементарной ступени осевой турбины. Параметры, относящиеся к охлаждению, составляют самостоятельную группу.

Как показано на рис. 8.1 (см. рис. 2.4), элементарная ступень осевой турбины состоит из неподвижной решетки СА – статора – и расположенной после нее решетки РК – ротора, – перемещающейся относительно неподвижного СА со скоростью u. За последней ступенью может быть установлен спрямляющий аппарат для обеспечения осевого направления потока на входе в затурбинное устройство (переходной канал между турбинами, диффузор форсажной камеры, реактивное сопло).

Под охлаждением газовых турбин понимают снижение рабочей температуры материала лопаток турбин по сравненению с более высокой температурой обтекающего их газового потока благодаря использованию различных устройств или систем. Охлаждение турбин является частью общей системы охлаждения различных элементов, деталей и узлов двигателя, но имеет ряд особенностей. Главная из них заключается в том, что для этой цели применяется так называемое внутреннее охлаждение с использованием теплоносителя, протекающего по специальным Внутренним полостям в сопловых и рабочих лопатках. Кроме того, слабое снижение температуры материала достигается также внешним охлаждением за счет естественного отвода тепла и за счет теплоизлучения горячих частей, корпуса турбины, при охлаждении подшипников турбины смазывающим их маслом, при обдуве дисков турбины и специальной продувке охлаждающим воздухом замков турбинных лопаток и т. д. Такие способы внешнего охлаждения подробно рассматриваются в курсах «Конструкция двигателей» [45].

Классификация систем внутреннего охлаждения с использованием теплоносителей, циркулирующих в специальных каналах внутри турбинных лопаток, начинается прежде всего с указания типа теплоносителя – жидкостное и газовое.

Жидкостное охлаждение, предполагающее, как правило, замкнутую схему циркуляции охлаждающей жидкости, имеет ряд преимуществ, обусловленных прежде всего высокой теплоемкостью охлаждающего теплоносителя, а следовательно, высокой эффективностью работы такой системы охлаждения. Однако конструктивные сложности реализации такой системы сделали до настоящего времени нецелесообразным ее применение в авиационных ГТД. Главные сложности определяются необходимостью обеспечить надежное уплотнение в местах ввода и вывода жидкостного теплоносителя из вращающегося ротора. Этих недостатков лишены лопатки с естественной циркуляцией, работающие по принципу термосифона, но и они не получили пока применения в системах охлаждения в основном из-за усложнения и утяжеления конструкции лопаток и дисков.

Не нашли также применения и в авиационных ГТД замкнутые схемы с газовым теплоносителем, т. е. системы, в которых газовый теплоноситель после прохождения по каналам охлаждаемой лопатки затем охлаждается в специальном теплообменнике (радиаторе) и вновь поступает на охлаждение лопаток.

Соседние файлы в папке Шпоры ЛМ