
- •Учебно-методический материал Раздел №1 «Теоретические основы криогенной техники»
- •Оглавление
- •Тема № 1. Сжатие газов Лекция №1. Назначение, содержание дисциплины. Принцип работы компрессоров и воздухоразделительных установок Учебный вопрос № 1. Назначение и содержание дисциплины
- •Учебный вопрос № 2. Роль газов в обеспечении полетов авиации
- •Учебный вопрос № 3. Назначение, классификация, характеристики и области применения компрессоров
- •Учебный вопрос № 4. Построение диаграммы s – т.
- •Групповое занятие № 1. Процессы одноступенчатого и многосту-пенчатого сжатия газов Учебный вопрос № 1. Одноступенчатое сжатие и его предел
- •Учебный вопрос № 2. Многоступенчатое сжатие.
- •Тема № 2. Очистка и осушка воздуха. Лекция №1. Очистка и осушка воздуха Учебный вопрос № 1. Необходимость очистки и осушки воздуха
- •Учебный вопрос № 2. Способы очистки воздуха
- •Групповое занятия №2. Комплексная очистка и осушка воздуха синтетическими цеолитами Учебный вопрос № 1. Характеристики адсорбентов
- •Учебный вопрос № 2. Комплексная очистка и осушка воздуха синтетическими цеолитами
- •Практическое занятие № 1. Адсорберы воздухоразделительных установок и взрывобезопасность. Учебный вопрос № 1. Адсорберы вру и взрывоопасность
- •Тема № 3. Расширение газов. Лекция № 1. Дросселирование газов. Учебный вопрос № 1. Сущность процесса дросселирования
- •Сжатый газ
- •Учебный вопрос № 3. Применение процесса дросселирования и влияние различных факторов на его эффективность
- •Групповое занятие № 2. Расширение газов с отдачей внешней работы. Учебный вопрос № 1. Назначение и классификация детандеров
- •Учебный вопрос № 3. Общее устройство и рабочий процесс турбодетандеров
- •Учебный вопрос № 4. Сущность процесса расширения газов с отдачей внешней работы
- •Учебный вопрос № 5. Характеристика процесса расширения газов
- •Тема № 4. Глубокое охлаждение. Лекция № 1.Глубокое охлаждение и его циклы. Учебный вопрос № 1. Классификация циклов глубокого охлаждения
- •Учебный вопрос № 2. Абсорбционная холодильная установка
- •Учебный вопрос № 3. Пароэжекторная холодильная установка
- •Учебный вопрос № 4. Газовые холодильные машины
- •Групповое занятие № 2. Основные способы получения холода. Учебный вопрос № 1. Основные способы получения холода, используемые в действительных циклах глубокого охлаждения
- •Учебный вопрос № 2. Холодильные циклы с дросселированием
- •Групповое занятие № 2. Холодильные циклы с расширением воздуха в детандерах
- •Учебный вопрос № 1. Холодильный цикл среднего давления с расширением воздуха в поршневом детандере
- •Учебный вопрос № 2. Холодильный цикл высокого давления с расширением воздуха в поршневом детандере
- •Учебный вопрос № 3. Цикл низкого давления с расширением воздуха в турбодетандере (цикл Капицы)
- •Тема № 5. Ректификация. Лекция № 1. Процессы испарения и конденсации. Учебный вопрос № 1. Общая характеристика процессов испарения и конденсации
- •Учебный вопрос № 2. Равновесие между жидкостью и паром в системе «кислород-азот» и диаграммы её равновесного состояния
- •Групповое занятие № 1. Процесс ректификации Учебный вопрос № 1. Сущность процесса ректификации
- •Учебный вопрос № 2. Однократная ректификация бинарной смеси
- •Учебный вопрос № 3. Двукратная ректификация бинарной смеси
- •Тема № 6. Процессы и аппараты воздухораздели-тельных установок. Лекция № 1. Теплообменники. Учебный вопрос № 1. Назначение и классификация теплообменных аппаратов
- •Учебный вопрос № 2. Рекуперативные теплообменники
- •Групповое занятие № 2. Конденсаторы-испарители Учебный вопрос № 1. Классификация и характеристики конденсаторов-испарителей.
- •Учебный вопрос № 2. Теплоотдача при конденсации пара
- •Учебный вопрос № 3. Теплоотдача при кипении
- •Групповое занятие № 3. Регенераторы Учебный вопрос № 1. Принцип действия регенераторов
- •Учебный вопрос № 2. Очистка воздуха от воды и двуокиси углерода в регенераторах
- •Учебный вопрос № 3. Способы обеспечения незабиваемости регенераторов
- •Практическое занятие № 4. Ректификационные колонны Учебный вопрос № 1. Назначение и состав ректификационных колонн
- •Учебный вопрос № 2. Классификация ректификационных колонн.
- •Учебный вопрос № 3. Конструкция ректификационных колонн промышленных установок разделения воздуха
- •Тема № 7. Контроль качества газов, применяемых в авиации Лекция № 1. Определение содержания веществ в газе. Учебный вопрос № 1. Требования к качеству газов, применяемых в авиации
- •Учебный вопрос № 2. Виды и объемы контроля качества газов, применяемых в авиации.
- •Учебный вопрос № 3. Определение содержания кислорода и азота в газовых смесях.
- •Учебный вопрос № 4. Определение содержания ацетилена, масла и вредных примесей в кислороде
- •Групповое занятие № 2. Приборы для определения влажности и качества газов, применяемых в авиации. Учебный вопрос № 1. Приборы для определения влажности газов
- •Учебный вопрос № 2. Современные методы и приборы контроля качества газов
- •Расчетные
- •Визуально
- •Инструментальные
- •Учебный вопрос № 3. Методы измерений и приборный парк
Учебный вопрос № 4. Определение содержания ацетилена, масла и вредных примесей в кислороде
Ацетилен попадает в блок разделения воздухоразделительной установки с атмосферным воздухом. Среднее содержание ацетилена в 1 м3 атмосферного воздуха колеблется в пределах 0,001…0,1 см3. Вблизи ацетиленовых станций содержание ацетилена в атмосферном воздухе может возрасти до 30 см3/м3.
Ацетилен растворяется в жидком воздухе или в жидком кислороде до предела растворимости, который равен 5 см3/дм3. При содержании в 1 м3 воздуха менее 0,037 см3 ацетилена последний может находится в жидком кислороде только в растворенном виде, что не опасно.
При температуре равной 74 К (-199˚С) ацетилен переходит в твердое состояние и может накапливаться в аппаратах блока разделения воздуха. Система «твердый ацетилен – жидкий кислород» является взрывоопасной! Наличие в этой системе масла уменьшает энергию инициирования взрыва, то есть увеличивает его вероятность.
Причиной взрыва могут быть удары газовых волн, которые возникают при резком открытии или закрытии вентилей, резком повышении давления, быстром вскипании жидкого кислорода или воздуха. Другие возможные причины взрыва – трение и удары частичек твердого ацетилена о стенки и между собой.
При работе воздухоразделительной установки периодически необходимо брать анализ на содержание ацетилена в аппаратах блока разделения. Допустимое содержание ацетилена в жидком обогащенном воздухе – 0,4 см3/дм3, в жидком кислороде из аппаратов блока разделения – 0,04 см3/дм3. В медицинском кислороде согласно ГОСТ 6331-78 содержание ацетилена недопустимо.
Для осуществления контроля содержания ацетилена в жидком кислороде и в воздухе применяют следующие методы:
Хроматографический. Данный метод позволяет с большой точностью и быстро установить содержание ацетилена. Сущность метода заключается в предварительном обогащении микропримесей ацетилена в специальном концентраторе при низкой температуре и использовании высокочувствительного ионизационного способа детектирования. Чувствительность метода 10-8…10-9 об.%.
Экспрессный. Метод основан на адсорбции ацетилена при испарении пробы жидкости стеклотканью, помещенной в сосуд для испарения пробы, последующим поглощением ацетилена при отогревании сосуда поглотительным раствором и колориметрирования окрашенного раствора. Метод рекомендуется для определения ацетилена в условиях:
кислородных установок небольшой производительности;
в период пуска крупных блоков разделения воздуха при недостаточном количестве жидкости в конденсаторах и кубе колонны;
при необходимости проведения экспрессных анализов в условиях возможного быстрого увеличения концентрации ацетилена в колонне воздухоразделительной установки.
Ошибка определения ацетилена экспрессным методом составляет около 30 %.
Адсорбционно-колориметрический. Метод основан на поглощении ацетилена из анализируемого жидкого кислорода адсорбентом с последующим извлечением его из адсорбента газообразным азотом и пропусканием этой газовой смеси через раствор реактива, который улавливает ацетилен и меняет свою окраску при этом. Степень окраски реактива зависит от количества поглощенного ацетилена. По степени окраски реактива, пользуясь колориметрической шкалой прибора, определяется количество ацетилена в анализируемой жидкости.
Конденсационно-колориметрический. Метод основан на вымораживании ацетилена из газообразных продуктов, образующихся при испарении испытуемых жидкостей, возгонке ацетилена и его поглощении аммиачным раствором одновалентной меди с образованием окрашенного коллоидного раствора ацетиленовой меди. Содержание ацетилена в окрашенном растворе определяется колориметрическим методом. Определение ацетилена в воздухе основано на адсорбции ацетилена активированным углем и его вымораживании при температуре жидкого азота, последующей сублимации ацетилена и колориметрическом его определении.
Масло попадает в жидкий кислород при его производстве из поршневых компрессоров и детандеров через неплотности поршневых уплотнений. Наличие масла в кислороде недопустимо, так как реакция взаимодействия углеводородных масел с газообразным кислородом является экзотермической и может привести к взрыву.
Определение содержания масла в жидком кислороде производят двумя методами анализа: качественным и количественным.
Качественный метод выражается в том, что определенное количество жидкого кислорода (1 л) наливают в стеклянную колбу и дают ей испариться. После полного испарения пробы кислорода на внутренней поверхности колбы не должно оставаться пленки масла, капель влаги и твердых образований.
Количественный метод заключается в определении количества содержащегося в жидком кислороде или жидком воздухе масла нефелометрическим или люминесцентным методами.
Нефелометрический метод основан на образовании эмульсии при добавлении воды к раствору масла в смеси эфира и уксусной кислоты и сравнении мутности раствора с эталонами искусственной нефелометрической шкалы.
Люминесцентный метод основан на свойстве минеральных масел флуоресцировать под действием ультрафиолетовых лучей. При этом используются приборы:
люминесцентный компаратор ЛК-1;
фотоэлектрический флуориметр ФЛЮМ.
Качество люминесцентного метода зависит от природы растворенного масла, растворителя, типа применяемого прибора. Для проведения анализа с помощью прибора ФЛЮМ дозу испытуемого раствора вливают в кювет прибора, измеряют интенсивность люминесценции раствора и по градуированному графику определяют концентрацию масла в растворе.
При использовании компаратора ЛК-1 сравнивают интенсивность люминесценции исследуемого и эталонного растворов.
Нефелометрический и люминесцентный методы могут применяться также при количественном определении содержания масла в растворителях, используемых для обезжиривания кислородной аппаратуры.
Производимый газодобывающими станциями медицинский кислород может содержать не только определенное, но и опасное количество вредных примесей.
Основными вредными примесями газообразного кислорода, которые подлежат определению, являются:
окись углерода (СО);
двуокись углерода (СО2);
озон (О3) и другие окислители;
газообразные кислоты и основания.
Вдыхание медицинского кислорода с концентрациями вредных примесей выше допускаемых ГОСТ приводит к удушью, потере сознания или смерти.
Определение содержания вредных примесей в газообразном кислороде производится при помощи походной лаборатории ПКЛ-1, в комплект которой входит: химическая посуда, приспособления и химические реактивы, позволяющие в короткий срок определить наличие в кислороде указанных вредных примесей.