- •1. Определение машины, механизма, узла, детали.
- •2.Критерии работоспособности деталей машин. Интенсивность отказов.
- •3. Резьбовые соединения. Классификация резьб. Расчет элементов резьбы на прочность.
- •4. Соединение деталей машин с натягом. Расчет на прочность.
- •5. Шпоночные, шлицевые и профильные соединения. Расчет на прочность.
- •6. Условия самоторможение в резьбе. Необходимость стопорения резьб.
- •7. Расчет резьбы на срез и смятие.
- •8. Назначение и конструкция шариковых подшипников. Расчет на статическую грузоподъемность.
- •9. Форма и размеры катетов сварных соединений. Расчет на прочность стыковых сварных соединений.
- •10. Назначение и конструкция роликовых подшипников качения. Расчет на динамическую грузоподъемность.
- •11. Подшипники качения. Контактные напряжения в подшипниках качения.
- •12. Подшипники качения. Условные обозначения. Виды разрушения подшипников при эксплуатации машин и механизмов.
- •13. Ременные передачи. Геометрическое соотношение и кинематика ременной передачи.
- •14. Расчет на прочность таврового сварного соединения.
- •15. Заклепочные соединения. Условия нагружения заклепок. Прочные и прочноплотные заклепочные соединения. Применяемые материалы.
- •16. Валы и оси. Расчет по сопротивлению усталости. Запас сопротивления усталости.
- •17. Сварные нахлесточные соединения. Типы сварных швов. Расчет на прочность при растяжении.
- •18. Расчет подшипников качения на долговечность.
- •19. Подшипники скольжения. Применяемые материалы. Конструкция.
- •23. Геометрия зуба цилиндрических зубчатых колес. Влияние количества зубьев на его форму. Методика расчета зубьев на изгиб.
- •25. Подшипники качения. Определение эквивалентной динамической нагрузки и подбор подшипника.
- •26. Силы, действующие в полюсе зацепления зубчатых колес. Направление и разложение сил.
- •27. Механические передачи. Назначение. Основные характеристики.
- •28. Расчёт зубьев прямозубых цилиндрических передач на изгиб.
- •29. Расчёт зубьев прямозубых цилиндрических передач по контактным напряжениям.
- •31.Типы ременных передач. Материалы ременных передач. Конструкции ремней и шкивов. Силы действующие в передаче.
- •32. Шевронные зубчатые колёса. Усилия в зацеплении. Особенности расчёта. Методы изготовления.
- •33. Валы и оси. Применяемые материалы. Элементы конструкции валов. Этапы проектного и проверочного расчётов.
- •34. Червячные передачи. Конструкции червяков и червячных колёс. Материалы применяемые в червячных парах. Особенности расчёта.
- •35. Типы сварных соединений. Образование зоны термического влияния. Характер разрушений сварных соединений.
- •37. Расчёт затянутого болта. Схема нагружений соединения.
- •38. Элементы конструкции цилиндрических зубчатых колёс. Коэффициент формы зуба. Определение шестерни. Определение зубчатого колеса.
- •39. Цепные передачи. Определение передаточного отношения. Расчет межосевых расстояний.
- •40. Заклёпочные соединения. Типы заклёпок. Механизм заклёпочного соединения деталей. Материалы заклёпок.
- •41. Основные геометрические характеристики цилиндрического зубчатого колеса.
- •42. Компенсация осевых, радиальных, угловых погрешностей при соединении валов муфтами.
- •44.Муфты.Общие сведения.Классификация.
- •45. Шлицевые и зубчатые соединения.
- •46. Фрикционные передачи. Контактные напряжения и контактная прочность.
- •47. Коэффициент тяги ременной передачи
- •48. Ременные передачи. Профиль клинового ремня. Методика расчёт передач.
- •49. Конические зубчатые передачи. Формы зубьев. Особенности расчёта и прочность.
- •50. Силовые соотношения в винтовой паре.
- •51. Распределение осевой нагрузки по виткам резьбы
- •52. Червячные передачи. Основные виды червяков. Применяемые материалы.
- •53. Расчёт болтового соединения, нагруженного внешней растягивающей нагрузкой.
- •54. Расчет валов на жесткость.
5. Шпоночные, шлицевые и профильные соединения. Расчет на прочность.
Шпоночные и шлицевые соединения служат для закрепления деталей на валах и передачи крут моментов. Такими деталями являются з.к., маховики, муфты и т.д. все виды шпонок делят на: клиновые и призматические. Первые образуют напряженное состояние, а вторые – ненапряженное.
1– вал
2 – ступица колеса
3 – призматическая шпонка
4 – распорная втулка
b– ширина шпонки
h– высота шпонки
t1– глубина шпоночного паза
t2– глубина шпоночного паза на ступице.
Длина шпонки выбирается из стандартного ряда. Шпонка подбирается по диаметру вала. Рабочая длина – длина шпонки по горизонтальному участку.
Обычно рассчитывают по напряжениям смятия. В продольном сечении возникают напряжения среза.
Шлицевые соединения можно представить как многошпоночные, у которых шпонки выполнены заодно с валом.
Достоинства: большая нагрузка, более надёжны в динамических нагрузках (удар).
Недостатки: сложная технология изготовления, высокая стоимость.
Основные геометрические параметры:
- число шлицов
- ширина шлица – b
- внутренний диаметр – d
- наружный диаметр – D
По форме шлица:
- прямобочные – эвольвентные - треугольные
Проверка ведётся по напряжениям смятия:
Т- вращающий момент, SF– удельный статический момент,
l– длина шлица.
[σCM] зависит от условий работы соединения.
Напряжения изнашивания:
[σИЗН] зависит от термообработки
0,032 – улучшение
0,03 – закалка.
Профильными называют соединения, в которых ступица (втулка) насаживается на фасонную поверхность вала и таким образом обеспечивается жесткое фиксирование деталей в окружном направлении и передача вращения. В качестве примера показано соединение на квадрате со скругленными углами (для снижения концентрации напряжений); применяются также соединения эллиптического и треугольного сечений.
Профильные соединения рассчитывают на смятие. Условие прочности по допускаемым напряжениям для соединения имеет обычный вид:
где l - длина соединения, обычно l=(1?2)d; b - ширина прямолинейной части грани; [σсм] допускаемое напряжение смятия, для термообработанных поверхностей [σсм]=100-140 МПа.
6. Условия самоторможение в резьбе. Необходимость стопорения резьб.
Самоторможение резьбы - Явление, возникающее при условии, когда угол подъёма винтовой линии резьбы меньше приведённого угла трения.
Условие самоторможения можно записать в виде Тотв > 0. Рассматривая самоторможение только в резьбе без учета трения на торце гайки, получим или
Для крепежных резьб значение угла подъема лежит в пределах 2°30' – 3°30', а угол трения φ изменяется в пределах 6° (при ) – 16º (при ). Таким образом, все крепежные резьбы – самотормозящие. Резьбы для ходовых винтов выполняют как самотормозящие, так и несамотормозящие.
Самоотвинчивание разрушает соединения и может привести к авариям. Предохранение от самоотвинчивания весьма важно для повышения надёжности резьбовых соединений и совершенно необходимо при вибрациях, переменных и ударных нагрузках. Вибрации понижают трение и нарушают условие самоторможения в резьбе.
Способы стопорения резьб:
1) дополнительным трением в резьбе (контрогайка, пружинная шайба)
2) при помощи дополнительных устройств
3) создание пластических деформаций.