
- •Лекция №1
- •2. Аксиоматика бжд
- •1.1.4 Принципы, методы и средства безопасности жизнедеятельности
- •Лекция 2 Тема: Негативные факторы среды обитания
- •Виды, источники и уровни негативных факторов производственной и бытовой среды.
- •2.1 Негативные воздействия в системе «Человек-среда обитания»
- •1.2.2 Виды, источники и уровни негативных факторов производственной и бытовой среды
- •2.3 Поражающие факторы чрезвычайных ситуаций
- •Лекция 3 Человек как элемент эргатической системы
- •1. Антропометрические характеристики человека
- •2. Работоспособность человека и ее динамика
- •3. Надежность человека как элемента эргатической системы
- •1. Анализаторы.
- •2. Характеристики анализаторов
- •3 Основные психофизические законы восприятия
- •4. Характеристики анализаторов человека
- •1. Действие шума на организм человека
- •2. Частотный диапазон звука
- •3. Измерение производственного шума
- •4. Классификация шума
- •4.1 Классификация шума по источникам возникновения
- •Классификация по характеру спектра и временным характеристикам
- •1. Нормирование производственного шума
- •Методы борьбы с шумом
- •3. Ультразвук. Нормирование и защита
- •4. Инфразвук. Нормирование и защита
- •5. Вибрация
- •5.1 Виды вибрации и ее источники
- •5.2 Характеристики вибрации
- •5.3 Действие вибрации на организм человека
- •5.4 Нормирование вибрации
- •5.5 Защита от вибрации
- •Лекция 8 Электромагнитные неионизирующие излучения (промышленных и радиочастот)
- •1. Источники и характеристики электромагнитных полей радиочастот.
- •3. Воздействие электромагнитных полей на организм человека
- •4. Нормирование электромагнитных излучений
- •Введение
- •1. Краткая характеристика различных видов ии
- •2. Единицы активности и дозы ионизирующих излучений
- •3.1 Механизм действия ии на биологические объекты
- •Внутреннее облучение.
- •3. 2 Воздействие радиации на организм человека
- •4. Источники ионизирующих излучений
- •5. Нормирование ионизирующих излучений.
- •7 Защита от ионизирующих излучений
- •6. Дозиметрический контроль
- •Электробезопасность
- •1. Воздействие электрического тока на организм
- •2. Пороговые значения токов
- •3. Электрическое сопротивление тела человека
- •4. Анализ опасности прикосновения к токоведущим частям эу
- •4.1 Нормальный режим работы электроустановок
- •4.2 Аварийный режим
- •3. Требования к персоналу
- •4. Организационно-технические мероприятия
- •5. Технические средства защиты в электроустановках
- •1.3 Защитное заземление
- •1.2. Виды горения
- •1.3 Виды процесса возникновения горения
- •1.4 Характеристики пожароопасных веществ
- •3. Верхний концентрационный предел воспламенения (для газов)-
- •3. Оценка пожарной опасности промышленных предприятий
- •4. Пожарная профилактика в производственных зданиях
- •Лекция 13
- •2. Классификация чс
- •1 Основные определения и понятия, связанные с чрезвычайными ситуациями
- •1.1 Чс техногенного характера
- •1.2 Чс природного характера
- •1.3 Чс экологического характера
- •Лекция 14
- •2. Тепловые и осколочные поля
- •3. Выброс химически опасных веществ
- •4. Выброс радиоактивных веществ
2. Частотный диапазон звука
Рис.
1
Поскольку звуковые волны представляют собой колебательный процесс, величины интенсивности звука и звуковое давление в точке звукового поля изменяются во времени по синусоидальному закону. Характерными величинами являются их среднеквадратичные значения. Зависимость среднеквадратичных значений синусоидальных составляющих шума или соответствующих им уровней в децибелах от частоты называется частотным спектром шума (или просто спектром). Спектры получают, используя набор электрических фильтров, которые пропускают сигнал в определенной полосе частот - полосе пропускания.
Для
получения частотной характеристики
шума звуковой диапазон по частоте
разбивается на полосы с определенным
соотношением граничных частот
(рис.2)
Рис.2
_____
f с.г. = fн fв
В
некоторых случаях (детальное исследование
источников шума, эффективности
звукоизоляции) используют деление на
полуоктавные полосы (fв/fн
=
)
и третьеоктавные полосы (fв/fн
=
=
1,26).
3. Измерение производственного шума
Звук
характеризуется своей интенсивностью
и
звуковым давлениемР
Па.
Кроме этого, любой источник шума
характеризуется звуковой мощностью,
которая представляет собой общее
количество звуковой энергии, излучаемой
источником шума в окружающее пространство.
Если окружить источник шума замкнутой поверхностью площадью S, то звуковая мощность источника определится как
Р =
,
где In - нормальная к поверхности составляющая интенсивности.
С учетом логарифмической зависимости ощущения от изменения энергии раздражителя (закон Вебера-Фехнера) и целесообразности унификации единиц и удобства оперирования с цифрами принято использовать не сами величины интенсивности, звукового давления и мощности, а их логарифмические уровни
LJ
= 10 lg
,
где I – интенсивность звука в данной точке, I0 – интенсивность звука, соответствующая порогу слышимости, равному 10-12 Вт/м, Р – звуковое давление в данной точке пространства, Р0 – пороговое звуковое давление, равное 210-5 Па, Ф – мощность звука в данной точке, Ф0 - пороговая звуковая мощность, равная 10-12 Вт.
При нормальном атмосферном давлении
LJ = Lp = L
Для измерения шума с целью оценки его воздействия на человека, используется уровень звукового давления Lp (часто обозначается просто L). Уровень интенсивности LJ используют при акустических расчетах помещений.
Рис.3