
- •1. Силовая электроника, определение, современное состояние и основные направления развития.
- •2. Основные задачи и проблемы, возникающие при проектировании силовых электронных устройств (сэу).
- •3. Обобщенная структурная схема и основные элементы сэу.
- •4. Использование сэу в системах управления, регулирования и контроля ла.
- •5. Использование сэу в системах преобразования электрической энергии на борту ла.
- •6. Обобщенная классификация сэу по различным признакам, преобразовательные сэу и сэу для получения управляющих воздействий.
- •7. Управляемые сэу, обобщенная структурная схема технологического объекта с управляемым сэу.
- •22. Характеристики выключения тиристора, время выключения (восстановление).
- •8. Классификация исполнительных сэу.
- •9. Классификация преобразовательных сэу.
- •10. Простые и комбинированные преобразователи и их структурные схемы.
- •17. Определение основных потерь в вентилях на низких частотах.
- •11. Роль эвм, микропроцессорной техники в развитии сэу.
- •12. Виды преобразования параметров электрической энергии, примеры использования преобразовательных сэу.
- •13. Основные пассивные компоненты, используемые в сэу: резисторы, конденсаторы, индуктивности, основные параметры и конструктивные особенности.
- •14. Силовые полупроводниковые приборы (спп), общие сведения, направления развития и классификация по степени управляемости.
- •15. Силовые диоды (вентили), физические основы и конструкция, система обозначений и маркировок, система параметров и характеристик, специальные группы параметров.
- •16. Эквивалентная тепловая схема силового диода, внутреннее и общее установившиеся тепловые сопротивления.
- •18. Составляющие дополнительных потерь в управляемых и неуправляемых спп.
- •19. Последовательное и параллельное соединение силовых диодов, расчет выравнивающих элементов.
- •20. Силовые стабилитроны и ограничители напряжения, условное обозначение, основные параметры и вах, области использования.
- •23. Система параметров тиристора по току и напряжению.
- •24. Система динамических параметров тиристора.
- •21. Тиристоры, структурная схема, двухтранзисторная модель и вах тиристора, условия и характеристики включения.
- •34. Принципы построения современных силовых биполярных транзисторов, основные параметры.
- •25. Характеристики управляющего перехода тиристора и параметры цепи управления.
- •26. Зависимости параметров тиристора от температуры, система обозначений и маркировок тиристора.
- •27. Базовая структура, обозначение, вах и параметры симистора, области использования симистора.
- •29. Базовые структуры и принцип действия запираемого тиристора и тиристора с комбинированным выключением.
- •28. Структура, обозначение и параметры тиристорных оптронов, области их использования.
- •33. Основные схемы устройств запирания тиристоров, определение схемного времени восстановления тиристоров.
- •30. Структура и вах тиристора-диода.
- •32. Требования, предъявляемые к управляющим импульсам тиристора, режимы работы генераторов управляющих импульсов.
- •36. Построение мощных переключающих элементов на основе пт. Преимущества и недостатки пт.
- •38. Временные диаграммы выключения igbt и зависимость напряжения открытого транзистора от температуры.
- •37. Структура, эквивалентная схема и графическое обозначение биполярных транзисторов с изолированным затвором (igbt), принцип действия, преимущества и недостатки.
- •39. Структура построения и схемы силовых полупроводниковых модулей (спм), области использования.
- •41. Структура и конструктивные особенности запираемых тиристоров типа gct и igbt, принцип действия, параметры и области использования.
- •42.Режимы работы спп в сэу и их характеристика.
- •44. Исполнительные сэу, классификация, области использования.
- •45. Импульсные усилители мощности, основные схемы, особенности работы, расчет элементов.
- •54. Преобразовательные сэу, классификация, области использования.
- •46. Способы формирования управляющих воздействий, структура управляющих схем для усилителей мощности.
- •51. Широтно-импульсные регуляторы (шир) постоянного тока, классификация, основные схемы и их особенности.
- •52. Регулировочная характеристика последовательных шир, расчет основных элементов.
- •53. Регулировочная характеристика параллельных шир, расчет основных элементов.
- •55 . Выпрямители одно и трехфазного питания, структура, классификация, основные эксплуатационные параметры и характеристики.
- •56. Основные схемы выпрямителей однофазного питания, временные диаграммы их работы на различные виды нагрузок, расчет основных параметров и характеристик.
- •1. Схема однополупериодного выпрямления
- •2. Двухполупериодная схема выпрямления с выводом нулевой точки
- •3. Однофазная мостовая схема выпрямления
- •57. Основные схемы выпрямителей трехфазного питания, временные диаграммы работы на различные виды нагрузок, расчет основных параметров и характеристик.
- •59. Временные диаграммы работы регулируемых выпрямителей трехфазного питания на различные виды нагрузок, регулировочная характеристика.
- •61. Структурные схемы систем управления регулируемыми выпрямителями и ивс, основные узлы и их реализация.
- •63. Автономные инверторы тока (аит), классификация, основные схемы, временные диаграммы работы, расчет основных параметров и характеристик, примеры использования в системах управления.
- •62. Автономные инверторы (аи), определение, назначение, классификация, области использования.
- •63. Автономные инверторы тока (аит), классификация, основные схемы, временные диаграммы работы, расчет основных параметров и характеристик, примеры использования в системах управления.
- •65. Автономные резонансные инверторы (аир), определение, классификация, физические процессы и особенности работы.
- •66. Основные схемы аир без встречных диодов, временная диаграмма работы, расчет основных параметров и характеристик, достоинства и недостатки.
- •67. Основные схемы аир со встроенными диодами и удвоением частоты, временные диаграммы работы, расчет основных параметров и характеристик.
- •68. Использование аир со встречными диодами и удвоением частоты в системах управления электротехнологических установок.
- •40. Силовые интеллектуальные приборы (сип), структура, классификация, особенности и защитные функции сип.
- •72. Структура быстродействующих систем защиты сэу при аварийных режимах, основные элементы и требования к ним.
16. Эквивалентная тепловая схема силового диода, внутреннее и общее установившиеся тепловые сопротивления.
Θк- температура корпуса, Θох- корпус охладитель. Характеризует установившееся внутреннее сопротивление.
Тепловые сопротивления используются при тепловых расчетах так же, как электрические сопротивления при электрических расчетах. Они входят в расчетную формулу как последовательно или параллельно соединенные, образуя тепловую сеть. При расчете установившихся состояний в расчетные формулы теплопроводности входят только тепловые сопротивления. При расчетах переходных процессов приходится учитывать также теплоемкость и использовать дифференциальные уравнения первого порядка. От места своего возникновения тепло должно дойти до охлаждаемой поверхности. В полупроводниковых приборах тепло возникает прежде всего непосредственно в полупроводниковом переходе. Изготовители полупроводниковых приборов указывают в каталогах внутреннее тепловое сопротивление прибора. Если прибор установлен на охладителе, между источником тепла и окружающей средой действуют три тепловых сопротивления:внутреннее тепловое сопротивление прибора ;тепловое сопротивление контакта между корпусом прибора и охладителем ;тепловое сопротивление охладителя или, точнее, между охладителем и окружающей средой.
Для конструкции преобразователей решающее значение имеют установившиеся тепловые явления, которые определяют максимальные значения температуры во всех точках преобразователя.
Полное установившееся тепловое сопротивление
18. Составляющие дополнительных потерь в управляемых и неуправляемых спп.
Составляющими дополнительных потерь Pдп являются потери: потери от прямой утечки Pпр, потери от обратной утечки Pоб, утечки включения Pвк, утечки выключения Pвык и утечки управления Pу.
Pдп= Pпр + Pоб + Pвк + Pвык + Pу
Потери в выпрямителях переменного тока частотой 50 Гц обусловлены, в основном, статическими потерями в диодах при протекании прямого и обратного токов.
Коммутационные потери незначительны ввиду малой частоты переменного тока.
Мощность потерь, выделяемую в мостовом выпрямителе при протекании прямого тока iF, можно рассчитать, интегрируя за один полупериод мгновенную мощность, выделяемую в одном диоде и удваивая результат, поскольку за полупериод одинаковый ток протекает через два диода.
где Vf - прямое падение напряжения на диоде.
За ноль отсчета в первом интеграле принят момент времени, когда входное напряжение проходит через ноль, а во втором интеграле – момент времени, когда ток через диод скачкообразно нарастает до максимальной величины IFm.
Таким образом, для расчета мощности потерь в диодном мосте с активно-емкостной нагрузкой по паспортным данным диодов (прямое падение напряжения при среднем токе нагрузки VF и ток утечки на максимальном обратном напряжении Irm) и основным параметрам выпрямителя (средний ток нагрузки и максимальное выпрямительное напряжение). Уменьшить мощность потерь в мостовом выпрямителе можно за счет уменьшения двух параметров: или VF или Irm, предварительно оценив их значимость в общих потерях.