
- •1. Силовая электроника, определение, современное состояние и основные направления развития.
- •2. Основные задачи и проблемы, возникающие при проектировании силовых электронных устройств (сэу).
- •3. Обобщенная структурная схема и основные элементы сэу.
- •4. Использование сэу в системах управления, регулирования и контроля ла.
- •5. Использование сэу в системах преобразования электрической энергии на борту ла.
- •6. Обобщенная классификация сэу по различным признакам, преобразовательные сэу и сэу для получения управляющих воздействий.
- •7. Управляемые сэу, обобщенная структурная схема технологического объекта с управляемым сэу.
- •22. Характеристики выключения тиристора, время выключения (восстановление).
- •8. Классификация исполнительных сэу.
- •9. Классификация преобразовательных сэу.
- •10. Простые и комбинированные преобразователи и их структурные схемы.
- •17. Определение основных потерь в вентилях на низких частотах.
- •11. Роль эвм, микропроцессорной техники в развитии сэу.
- •12. Виды преобразования параметров электрической энергии, примеры использования преобразовательных сэу.
- •13. Основные пассивные компоненты, используемые в сэу: резисторы, конденсаторы, индуктивности, основные параметры и конструктивные особенности.
- •14. Силовые полупроводниковые приборы (спп), общие сведения, направления развития и классификация по степени управляемости.
- •15. Силовые диоды (вентили), физические основы и конструкция, система обозначений и маркировок, система параметров и характеристик, специальные группы параметров.
- •16. Эквивалентная тепловая схема силового диода, внутреннее и общее установившиеся тепловые сопротивления.
- •18. Составляющие дополнительных потерь в управляемых и неуправляемых спп.
- •19. Последовательное и параллельное соединение силовых диодов, расчет выравнивающих элементов.
- •20. Силовые стабилитроны и ограничители напряжения, условное обозначение, основные параметры и вах, области использования.
- •23. Система параметров тиристора по току и напряжению.
- •24. Система динамических параметров тиристора.
- •21. Тиристоры, структурная схема, двухтранзисторная модель и вах тиристора, условия и характеристики включения.
- •34. Принципы построения современных силовых биполярных транзисторов, основные параметры.
- •25. Характеристики управляющего перехода тиристора и параметры цепи управления.
- •26. Зависимости параметров тиристора от температуры, система обозначений и маркировок тиристора.
- •27. Базовая структура, обозначение, вах и параметры симистора, области использования симистора.
- •29. Базовые структуры и принцип действия запираемого тиристора и тиристора с комбинированным выключением.
- •28. Структура, обозначение и параметры тиристорных оптронов, области их использования.
- •33. Основные схемы устройств запирания тиристоров, определение схемного времени восстановления тиристоров.
- •30. Структура и вах тиристора-диода.
- •32. Требования, предъявляемые к управляющим импульсам тиристора, режимы работы генераторов управляющих импульсов.
- •36. Построение мощных переключающих элементов на основе пт. Преимущества и недостатки пт.
- •38. Временные диаграммы выключения igbt и зависимость напряжения открытого транзистора от температуры.
- •37. Структура, эквивалентная схема и графическое обозначение биполярных транзисторов с изолированным затвором (igbt), принцип действия, преимущества и недостатки.
- •39. Структура построения и схемы силовых полупроводниковых модулей (спм), области использования.
- •41. Структура и конструктивные особенности запираемых тиристоров типа gct и igbt, принцип действия, параметры и области использования.
- •42.Режимы работы спп в сэу и их характеристика.
- •44. Исполнительные сэу, классификация, области использования.
- •45. Импульсные усилители мощности, основные схемы, особенности работы, расчет элементов.
- •54. Преобразовательные сэу, классификация, области использования.
- •46. Способы формирования управляющих воздействий, структура управляющих схем для усилителей мощности.
- •51. Широтно-импульсные регуляторы (шир) постоянного тока, классификация, основные схемы и их особенности.
- •52. Регулировочная характеристика последовательных шир, расчет основных элементов.
- •53. Регулировочная характеристика параллельных шир, расчет основных элементов.
- •55 . Выпрямители одно и трехфазного питания, структура, классификация, основные эксплуатационные параметры и характеристики.
- •56. Основные схемы выпрямителей однофазного питания, временные диаграммы их работы на различные виды нагрузок, расчет основных параметров и характеристик.
- •1. Схема однополупериодного выпрямления
- •2. Двухполупериодная схема выпрямления с выводом нулевой точки
- •3. Однофазная мостовая схема выпрямления
- •57. Основные схемы выпрямителей трехфазного питания, временные диаграммы работы на различные виды нагрузок, расчет основных параметров и характеристик.
- •59. Временные диаграммы работы регулируемых выпрямителей трехфазного питания на различные виды нагрузок, регулировочная характеристика.
- •61. Структурные схемы систем управления регулируемыми выпрямителями и ивс, основные узлы и их реализация.
- •63. Автономные инверторы тока (аит), классификация, основные схемы, временные диаграммы работы, расчет основных параметров и характеристик, примеры использования в системах управления.
- •62. Автономные инверторы (аи), определение, назначение, классификация, области использования.
- •63. Автономные инверторы тока (аит), классификация, основные схемы, временные диаграммы работы, расчет основных параметров и характеристик, примеры использования в системах управления.
- •65. Автономные резонансные инверторы (аир), определение, классификация, физические процессы и особенности работы.
- •66. Основные схемы аир без встречных диодов, временная диаграмма работы, расчет основных параметров и характеристик, достоинства и недостатки.
- •67. Основные схемы аир со встроенными диодами и удвоением частоты, временные диаграммы работы, расчет основных параметров и характеристик.
- •68. Использование аир со встречными диодами и удвоением частоты в системах управления электротехнологических установок.
- •40. Силовые интеллектуальные приборы (сип), структура, классификация, особенности и защитные функции сип.
- •72. Структура быстродействующих систем защиты сэу при аварийных режимах, основные элементы и требования к ним.
11. Роль эвм, микропроцессорной техники в развитии сэу.
Электроника является универсальным и эффективным средством для решения самых различных проблем в области сбора и обработки информации, автоматического управления и преобразования энергии. Знания в области электроники становятся необходимыми все более широкому кругу специалистов.
Сфера применения электроники постоянно расширяется. Практически каждая достаточно сложная техническая система оснащается электронными устройствами. Трудно назвать технологический процесс, управление которого осуществлялось бы без использования электроники. Функции устройств электроники становятся все более разнообразными. Обратимся к идеализированной системе управления некоторым объектом (рис. 1.1).
Рис.1.1. Структурная схема системы управления
Электрические сигналы, содержащие информацию о контролируемых величинах, вырабатываются соответствующими датчиками. Эти сигналы фильтруются, усиливаются и преобразуются в цифровую форму с помощью аналого-цифровых преобразователей (АЦП). Затем они обрабатываются микропроцессором, который может взаимодействовать с ЭВМ. Формируемые микропроцессором сигналы управления преобразуются в аналоговую форму с помощью цифро-аналоговых преобразователей (ЦАП), усиливаются и подаются на силовые электронные устройства, управляющие исполнительными устройствами, непосредственно воздействующими на объект. Рассмотренная система содержит электронные устройства, работающие с аналоговыми сигналами (фильтры, усилители, силовые электронные устройства), цифровыми сигналами (микропроцессор, ЭВМ), а также устройства, осуществляющие преобразование сигналов из аналоговой формы в цифровую и обратно. Характеристики электронных устройств определяются прежде всего характеристиками составляющих их элементов. Роль электроники в настоящее время существенно возрастает в связи с применением микропроцессорной техники для обработки информационных сигналов и силовых полупроводниковых приборов для преобразования электрической энергии.
Бурное развитие современной промышленной техники неразрывно связано с успехами силовой электроники. Ее необходимость определяется большой потребностью в эффективных преобразователях и регуляторах электрической энергии.
12. Виды преобразования параметров электрической энергии, примеры использования преобразовательных сэу.
Основными видами преобразования электрической энергии являются:
выпрямление переменного тока - преобразование переменного тока (обычно промышленной частоты) в постоянный. Этот вид преобразования наиболее распространенный, так как часть потребителей электрической энергии может работать только на постоянном токе (сварочные устройства, электролизные установки и т. д.), другие же потребители (электропривод, системы электрической тяги, линии передачи электрической энергии очень высокого напряжения) имеют на постоянном токе более высокие технико-экономические показатели, чем на переменном;
инвертирование тока - преобразование постоянного тока в переменный. Применяется в тех случаях, когда источник энергии генерирует постоянный ток (аккумуляторные батареи, магнитогидродинамические генераторы);
преобразование частоты. Обычно переменный ток промышленной частоты 50 Гц преобразуется в переменный ток непромышленной частоты (питание регулируемых электроприводов переменного тока, установки индукционного нагрева и плавки металлов, ультразвуковые устройства и т. д.);
преобразование числа фаз. Иногда необходимо преобразование трехфазного тока в однофазный (для питания мощных дуговых электропечей) или наоборот, однофазного в трехфазный (электрифицированный транспорт). В промышленности используются трехфазно-однофазные преобразователи частоты с непосредственной частью, в которых наряду с преобразованием промышленной частоты в более низкую происходит и преобразование трехфазного напряжения в однофазное;
преобразование постоянного тока одного напряжения в постоянный ток другого напряжения (трансформирование постоянного тока). Подобное преобразование необходимо на ряде подвижных объектов, где источником питания является аккумуляторная батарея или другой источник постоянного тока низкого напряжения, а потребителям требуется постоянный ток более высокого напряжения (например, для питания радиотехнической аппаратуры).
Существуют и некоторые другие виды преобразования электрической энергии (например, формирование определенной кривой переменного напряжения), в частности, формирование мощных импульсов тока, которые находят применение в специальных установках, регулируемое преобразование переменного напряжения. Все виды преобразований осуществляются с использованием силовых ключевых элементов.