
- •1. Силовая электроника, определение, современное состояние и основные направления развития.
- •2. Основные задачи и проблемы, возникающие при проектировании силовых электронных устройств (сэу).
- •3. Обобщенная структурная схема и основные элементы сэу.
- •4. Использование сэу в системах управления, регулирования и контроля ла.
- •5. Использование сэу в системах преобразования электрической энергии на борту ла.
- •6. Обобщенная классификация сэу по различным признакам, преобразовательные сэу и сэу для получения управляющих воздействий.
- •7. Управляемые сэу, обобщенная структурная схема технологического объекта с управляемым сэу.
- •22. Характеристики выключения тиристора, время выключения (восстановление).
- •8. Классификация исполнительных сэу.
- •9. Классификация преобразовательных сэу.
- •10. Простые и комбинированные преобразователи и их структурные схемы.
- •17. Определение основных потерь в вентилях на низких частотах.
- •11. Роль эвм, микропроцессорной техники в развитии сэу.
- •12. Виды преобразования параметров электрической энергии, примеры использования преобразовательных сэу.
- •13. Основные пассивные компоненты, используемые в сэу: резисторы, конденсаторы, индуктивности, основные параметры и конструктивные особенности.
- •14. Силовые полупроводниковые приборы (спп), общие сведения, направления развития и классификация по степени управляемости.
- •15. Силовые диоды (вентили), физические основы и конструкция, система обозначений и маркировок, система параметров и характеристик, специальные группы параметров.
- •16. Эквивалентная тепловая схема силового диода, внутреннее и общее установившиеся тепловые сопротивления.
- •18. Составляющие дополнительных потерь в управляемых и неуправляемых спп.
- •19. Последовательное и параллельное соединение силовых диодов, расчет выравнивающих элементов.
- •20. Силовые стабилитроны и ограничители напряжения, условное обозначение, основные параметры и вах, области использования.
- •23. Система параметров тиристора по току и напряжению.
- •24. Система динамических параметров тиристора.
- •21. Тиристоры, структурная схема, двухтранзисторная модель и вах тиристора, условия и характеристики включения.
- •34. Принципы построения современных силовых биполярных транзисторов, основные параметры.
- •25. Характеристики управляющего перехода тиристора и параметры цепи управления.
- •26. Зависимости параметров тиристора от температуры, система обозначений и маркировок тиристора.
- •27. Базовая структура, обозначение, вах и параметры симистора, области использования симистора.
- •29. Базовые структуры и принцип действия запираемого тиристора и тиристора с комбинированным выключением.
- •28. Структура, обозначение и параметры тиристорных оптронов, области их использования.
- •33. Основные схемы устройств запирания тиристоров, определение схемного времени восстановления тиристоров.
- •30. Структура и вах тиристора-диода.
- •32. Требования, предъявляемые к управляющим импульсам тиристора, режимы работы генераторов управляющих импульсов.
- •36. Построение мощных переключающих элементов на основе пт. Преимущества и недостатки пт.
- •38. Временные диаграммы выключения igbt и зависимость напряжения открытого транзистора от температуры.
- •37. Структура, эквивалентная схема и графическое обозначение биполярных транзисторов с изолированным затвором (igbt), принцип действия, преимущества и недостатки.
- •39. Структура построения и схемы силовых полупроводниковых модулей (спм), области использования.
- •41. Структура и конструктивные особенности запираемых тиристоров типа gct и igbt, принцип действия, параметры и области использования.
- •42.Режимы работы спп в сэу и их характеристика.
- •44. Исполнительные сэу, классификация, области использования.
- •45. Импульсные усилители мощности, основные схемы, особенности работы, расчет элементов.
- •54. Преобразовательные сэу, классификация, области использования.
- •46. Способы формирования управляющих воздействий, структура управляющих схем для усилителей мощности.
- •51. Широтно-импульсные регуляторы (шир) постоянного тока, классификация, основные схемы и их особенности.
- •52. Регулировочная характеристика последовательных шир, расчет основных элементов.
- •53. Регулировочная характеристика параллельных шир, расчет основных элементов.
- •55 . Выпрямители одно и трехфазного питания, структура, классификация, основные эксплуатационные параметры и характеристики.
- •56. Основные схемы выпрямителей однофазного питания, временные диаграммы их работы на различные виды нагрузок, расчет основных параметров и характеристик.
- •1. Схема однополупериодного выпрямления
- •2. Двухполупериодная схема выпрямления с выводом нулевой точки
- •3. Однофазная мостовая схема выпрямления
- •57. Основные схемы выпрямителей трехфазного питания, временные диаграммы работы на различные виды нагрузок, расчет основных параметров и характеристик.
- •59. Временные диаграммы работы регулируемых выпрямителей трехфазного питания на различные виды нагрузок, регулировочная характеристика.
- •61. Структурные схемы систем управления регулируемыми выпрямителями и ивс, основные узлы и их реализация.
- •63. Автономные инверторы тока (аит), классификация, основные схемы, временные диаграммы работы, расчет основных параметров и характеристик, примеры использования в системах управления.
- •62. Автономные инверторы (аи), определение, назначение, классификация, области использования.
- •63. Автономные инверторы тока (аит), классификация, основные схемы, временные диаграммы работы, расчет основных параметров и характеристик, примеры использования в системах управления.
- •65. Автономные резонансные инверторы (аир), определение, классификация, физические процессы и особенности работы.
- •66. Основные схемы аир без встречных диодов, временная диаграмма работы, расчет основных параметров и характеристик, достоинства и недостатки.
- •67. Основные схемы аир со встроенными диодами и удвоением частоты, временные диаграммы работы, расчет основных параметров и характеристик.
- •68. Использование аир со встречными диодами и удвоением частоты в системах управления электротехнологических установок.
- •40. Силовые интеллектуальные приборы (сип), структура, классификация, особенности и защитные функции сип.
- •72. Структура быстродействующих систем защиты сэу при аварийных режимах, основные элементы и требования к ним.
46. Способы формирования управляющих воздействий, структура управляющих схем для усилителей мощности.
Согласно четвертому признаку классификации, различают СУВ с горизонтальным и вертикальным управлением. Горизонтальным называется способ управления, при котором фазовый сдвиг синхронизирующего синусоидального сигнала по отношению к напряжению питающей сети на угол (3 осуществляется с помощью RC или RL цепи, т.е. смещается по горизонтали. Полученное таким образом сдвинутое по фазе синусоидальное напряжение используется далее для формирования управляющего импульса тиристорами ВПУ. Схемы с горизонтальным управлением имеют ограниченное быстродействие и не нашли широкого применения. Вертикальный принцип управления и структурные схемы построения ФСУ,
реализующие этот способ рассмотрены в разделе 2.2 (рис. 2.11).
реализующие Вертикальным называется способ управления, при котором фазовый сдвиг управляющего сигнала uβ осуществляется путем сравнения изменяемого по величине сигнала управления uy
и переменного, так называемого опорного напряжения иг, имеющего пилообразную (или треугольную) форму, и формированием uβ в моменты равенства uу=uг .Такие ФСУ практически безынерционными и поэтому нашли самое широкое применение. Кроме того, современное развитие аналоговых и цифровых ИМС открывает широкое возможности по совершенствованию вертикального способа управления. На рис. 2.11, в приведен вариант структуры построения ФСУ с использованием ИМС аналогового таймера, позволяющего упростить, расширить функциональные возможности и повысить надежность работы СУВ.
64. Автономные инверторы напряжения (АЙН), определение, классификация, основные схемы, физические процессы и временные диаграммы работы, расчет основных параметров и характеристик, использование в системах управления.
Автономный инвертор напряжения как преобразователь постоянного входного напряжения в переменное выходное напряжение отличается от автономного инвертора тока тем, что получает питание от источника напряжения (ЭДС) безындуктивного характера.
где ψп – коммутационная функция вентильного комплекта есть переменная единичная функция (без постоянной составляющей), определяющая форму выходного напряжения инвертора, как это видно из рис. 2.3.1 для простейш формы коммутационной функции – меандра.
Как видно из второго уравнения, входной ток инвертора будет импульсным (со скачком тока), что не допускает присутствия во входном источнике индуктивности. Реальные источники входного напряжения (чаще всего выпрямители), как правило, обладают индуктивностью L (если это только не аккумуляторы). Для устранения ее влияния на входе инвертора напряжения включается фильтровый конденсатор Cф достаточной емкости, что является
первой особенностью инвертора напряжения. Через него и замыкаются, минуя входной источник, скачки входного тока инвертора, как это видно из временных диаграмм на рис. 2.3.2.
Вторая особенность инвертора напряжения также видна из второго уравнения (2.3.1) и связана с тем, что входной ток инвертора iвх может принимать отрицательные значения при большом сдвиге фазы выходного тока инвертора iвых относительно коммутационной функции ψп (т.е. выходного напряжения). Для этого необходимо наличие двусторонней проводимости у ключей вентильного комплекта инвертора, т.е. ключи должны быть выполнены на вентилях с полным управлением (транзисторы, GTO-тиристоры),шунтированных вентилями обратного тока. автономный инвертор напряжения - это прибор, предназначенный для преобразования постоянного тока в переменный. Автономные инверторы тока применяются там, где не только нельзя допускать перебоев с питанием, но и выставлены жесткие требования к синусоиде сигнала, уровню его гармоник и другим техническим характеристикам. Широкое применение автономных инверторов напряжения является следствием количества чувствительности техники, которая должна всегда работать с гарантией электроснабжения. Такую технику несложно найти в центрах обработки данных, телекоммуникациях, точной промышленности. Принцип действия автономного инвертора напряжения можно описать следующим образом: при пропадании напряжения в сети этот прибор мгновенно (за несколько миллисекунд) переключает подключенные к нему устройства на аккумуляторы. Автономность обеспечивает отсутствие необходимости в контроле со стороны человека, а в случае, если требуется обеспечение длительной работы, всегда можно подключить генераторы.