
- •1. Силовая электроника, определение, современное состояние и основные направления развития.
- •2. Основные задачи и проблемы, возникающие при проектировании силовых электронных устройств (сэу).
- •3. Обобщенная структурная схема и основные элементы сэу.
- •4. Использование сэу в системах управления, регулирования и контроля ла.
- •5. Использование сэу в системах преобразования электрической энергии на борту ла.
- •6. Обобщенная классификация сэу по различным признакам, преобразовательные сэу и сэу для получения управляющих воздействий.
- •7. Управляемые сэу, обобщенная структурная схема технологического объекта с управляемым сэу.
- •22. Характеристики выключения тиристора, время выключения (восстановление).
- •8. Классификация исполнительных сэу.
- •9. Классификация преобразовательных сэу.
- •10. Простые и комбинированные преобразователи и их структурные схемы.
- •17. Определение основных потерь в вентилях на низких частотах.
- •11. Роль эвм, микропроцессорной техники в развитии сэу.
- •12. Виды преобразования параметров электрической энергии, примеры использования преобразовательных сэу.
- •13. Основные пассивные компоненты, используемые в сэу: резисторы, конденсаторы, индуктивности, основные параметры и конструктивные особенности.
- •14. Силовые полупроводниковые приборы (спп), общие сведения, направления развития и классификация по степени управляемости.
- •15. Силовые диоды (вентили), физические основы и конструкция, система обозначений и маркировок, система параметров и характеристик, специальные группы параметров.
- •16. Эквивалентная тепловая схема силового диода, внутреннее и общее установившиеся тепловые сопротивления.
- •18. Составляющие дополнительных потерь в управляемых и неуправляемых спп.
- •19. Последовательное и параллельное соединение силовых диодов, расчет выравнивающих элементов.
- •20. Силовые стабилитроны и ограничители напряжения, условное обозначение, основные параметры и вах, области использования.
- •23. Система параметров тиристора по току и напряжению.
- •24. Система динамических параметров тиристора.
- •21. Тиристоры, структурная схема, двухтранзисторная модель и вах тиристора, условия и характеристики включения.
- •34. Принципы построения современных силовых биполярных транзисторов, основные параметры.
- •25. Характеристики управляющего перехода тиристора и параметры цепи управления.
- •26. Зависимости параметров тиристора от температуры, система обозначений и маркировок тиристора.
- •27. Базовая структура, обозначение, вах и параметры симистора, области использования симистора.
- •29. Базовые структуры и принцип действия запираемого тиристора и тиристора с комбинированным выключением.
- •28. Структура, обозначение и параметры тиристорных оптронов, области их использования.
- •33. Основные схемы устройств запирания тиристоров, определение схемного времени восстановления тиристоров.
- •30. Структура и вах тиристора-диода.
- •32. Требования, предъявляемые к управляющим импульсам тиристора, режимы работы генераторов управляющих импульсов.
- •36. Построение мощных переключающих элементов на основе пт. Преимущества и недостатки пт.
- •38. Временные диаграммы выключения igbt и зависимость напряжения открытого транзистора от температуры.
- •37. Структура, эквивалентная схема и графическое обозначение биполярных транзисторов с изолированным затвором (igbt), принцип действия, преимущества и недостатки.
- •39. Структура построения и схемы силовых полупроводниковых модулей (спм), области использования.
- •41. Структура и конструктивные особенности запираемых тиристоров типа gct и igbt, принцип действия, параметры и области использования.
- •42.Режимы работы спп в сэу и их характеристика.
- •44. Исполнительные сэу, классификация, области использования.
- •45. Импульсные усилители мощности, основные схемы, особенности работы, расчет элементов.
- •54. Преобразовательные сэу, классификация, области использования.
- •46. Способы формирования управляющих воздействий, структура управляющих схем для усилителей мощности.
- •51. Широтно-импульсные регуляторы (шир) постоянного тока, классификация, основные схемы и их особенности.
- •52. Регулировочная характеристика последовательных шир, расчет основных элементов.
- •53. Регулировочная характеристика параллельных шир, расчет основных элементов.
- •55 . Выпрямители одно и трехфазного питания, структура, классификация, основные эксплуатационные параметры и характеристики.
- •56. Основные схемы выпрямителей однофазного питания, временные диаграммы их работы на различные виды нагрузок, расчет основных параметров и характеристик.
- •1. Схема однополупериодного выпрямления
- •2. Двухполупериодная схема выпрямления с выводом нулевой точки
- •3. Однофазная мостовая схема выпрямления
- •57. Основные схемы выпрямителей трехфазного питания, временные диаграммы работы на различные виды нагрузок, расчет основных параметров и характеристик.
- •59. Временные диаграммы работы регулируемых выпрямителей трехфазного питания на различные виды нагрузок, регулировочная характеристика.
- •61. Структурные схемы систем управления регулируемыми выпрямителями и ивс, основные узлы и их реализация.
- •63. Автономные инверторы тока (аит), классификация, основные схемы, временные диаграммы работы, расчет основных параметров и характеристик, примеры использования в системах управления.
- •62. Автономные инверторы (аи), определение, назначение, классификация, области использования.
- •63. Автономные инверторы тока (аит), классификация, основные схемы, временные диаграммы работы, расчет основных параметров и характеристик, примеры использования в системах управления.
- •65. Автономные резонансные инверторы (аир), определение, классификация, физические процессы и особенности работы.
- •66. Основные схемы аир без встречных диодов, временная диаграмма работы, расчет основных параметров и характеристик, достоинства и недостатки.
- •67. Основные схемы аир со встроенными диодами и удвоением частоты, временные диаграммы работы, расчет основных параметров и характеристик.
- •68. Использование аир со встречными диодами и удвоением частоты в системах управления электротехнологических установок.
- •40. Силовые интеллектуальные приборы (сип), структура, классификация, особенности и защитные функции сип.
- •72. Структура быстродействующих систем защиты сэу при аварийных режимах, основные элементы и требования к ним.
38. Временные диаграммы выключения igbt и зависимость напряжения открытого транзистора от температуры.
Во многом решая проблему высоковольтных применений, IGBT тоже имеют врожденный дефект, и он носит название «хвост» (tail). Этот эффект объясняется наличием остаточного тока коллектора после выключения транзистора из-за конечного времени жизни неосновных носителей в области базы PNP-транзистора (см. рис. 2). Поскольку база недоступна, ускорить время выключения схемными методами нельзя.
Кроме того, падение напряжения на открытом транзисторе зависит от температуры, причем зависимость эта - положительная для MOSFET и отрицательная для IGBT. На графике рис. 1 приведена зависимость напряжения открытого транзистора для двух IGBT-транзисторов с разным быстродействием и MOSFET-транзистора, имеющего аналогичный размер кристалла . Ввиду большей стойкости MOSFET к лавинному пробою, 500-вольтовый полевой транзистор сравнивается с IGBT, рассчитанным на напряжение 600 В.
37. Структура, эквивалентная схема и графическое обозначение биполярных транзисторов с изолированным затвором (igbt), принцип действия, преимущества и недостатки.
Структура IGBT
Биполярный транзистор с изолированным затвором (IGBT - Insulated Gate Bipolar Transistors) - полностью управляемый полупроводниковый прибор, в основе которого трёхслойная структура. Его включение и выключение осуществляются подачей и снятием положительного напряжения между затвором и истоком. На рис.1 приведено условное обозначение IGBT.
рис. 1. Условное обозначение IGBT |
рис. 2. Схема соединения транзисторов в единой структуре IGBT |
IGBT являются продуктом развития технологии силовых транзисторов со структурой металл-оксид-полупроводник, управляемых электрическим полем (MOSFET-Metal-Oxid-Semiconductor-Field-Effect-Transistor) и сочетают в себе два транзистора в одной полупроводниковой структуре: биполярный (образующий силовой канал) и полевой (образующий канал управления). Эквивалентная схема включения двух транзисторов приведена на рис. 2. Прибор введён в силовую цепь выводами биполярного транзистора E (эмиттер) и C (коллектор), а в цепь управления - выводом G (затвор).
Таким образом, IGBT имеет три внешних вывода: эмиттер, коллектор, затвор. Соединения эмиттера и стока (D), базы и истока (S) являются внутренними. Сочетание двух приборов в одной структуре позволило объединить достоинства полевых и биполярных транзисторов: высокое входное сопротивление с высокой токовой нагрузкой и малым сопротивлением во включённом состоянии.
Биполярные транзисторы с изолированным затвором (IGBT) — полупроводниковые компоненты, которые являются гибридом МОП-транзистора и биполярного транзистора. Они имеют вертикальную структуру, которую мы уже встречали в предыдущих компонентах. IGBT является, по сути, биполярным /?-и-р-транзистором, ток на базу которого подаётся с паразитного полевого транзистора между коллектором и базой. На Рис. 7.32 изображена эквивалентная схема, учитывающая паразитные элементы внутри IGBT. Конструкция у него такая же, как у и-канального МОП-транзистора, только с дополнительным слоем р+. Этот дополнительный ^-«-переход является последовательным диодом, блокирующим внутренний диод МОП-транзистора.
МОП-транзисторы имеют довольно большое сопротивление rDS(ON) при номинальном напряжении выше 500 В. По этой причине сильно возрастают потери проводимости по сравнению с биполярными транзисторами с тем же номинальным напряжением. К тому же потери проводимости МОП-транзистора возрастают с ростом температуры в связи с увеличением сопротивления в открытом состоянии.
Слой р+ в IGBT инжектирует неосновные носители заряда в эпитаксиальный обеднённый слой n—, что улучшает проводимость области дрейфа и—. Этот эффект подобен эффекту, возникающему в биполярных транзисторах. Такая модуляция проводимости слоем р+ способствует тому, что падение напряжения на транзисторе в открытом состоянии относительно постоянно во всей области рабочих напряжений.
Рис. 7.32. Эквивалентная схема, учитывающая паразитные элементы внутри IGBT |
Р-n-р-транзистор в IGBT полностью не насыщается, поэтому падение напряжения на нём в открытом состоянии никогда не бывает ниже падения напряжения на одном диоде и в типичных случаях составляет 1.0...3.0 В. Время запирания у IG ВТ намного лучше, чему биполярного транзистора, потому что в данном случае отсутствует накопление заряда, вызванное эффектом насыщения. Поток электронов в IGBT прекращается сразу же, как только снимается напряжение с затвора, но ток в дрейфовой области продолжает течь, пока не рекомбинируют все дырки. Базовый переход р-л-р-транзистора не имеет внешнего подключения, поэтому нет возможности создавать отрицательный ток базы, чтобы выводить из дрейфовой области неосновные носители заряда в процессе запирания. Вследствие этого при запирании возникает небольшой остаточный ток.
достоинства IGBT 1. при использовании на рабочее напряжение свыше 300v IGBT - дешевле 2. IGBT - имеют более высокую крутизну - нужно меньше энергии для их открывания/закрывания 3. IGBT-имеют меньше значение паразитных емкостей 4. IGBT-более радиационностойкие
недостатки IGBT 1. MOSFET - в открытом состоянии как резистор, который может быть очень маленьким, например, 1mOhm и при токе в 100А через него рассеиваемая мощность будет всего 10Watt, на IGBT при таком токе падение напряжения будет минимум 2v поэтому рассеиваемая мощность будет 200Watt.-сравни 10W и 200W 2. IGBT - может работать только в импульсном режиме включено/выключено и не может работать в линейном режиме как MOSFET 3. IGBT - имеет более высокие коммутационные потери чем MOSFET и не может работать на таких же высоких частотах как MOSFET 4. IGBT - менее надёжен - менее устойчив к перегрузкам по току и напряжению по сравнению с MOSFET, -при перегрузках по току и в случае лавинного пробоя в IGBT выделяется большая мощность при меньшем размере кристала и следовательно меньшим запасом теплоёмкости, не все IGBT в отличие от MOSFET могут работать в режиме лавинного пробоя(ораничения выходного напряжения), IGBT - более подвержены к выходу из строя из-за термоциклирования, IGBT - менее помехоустойчивые.