
- •1. Определение информации.
- •2.Виды каналов передачи информации
- •18.Импульсные виды модуляции.
- •4.Фазы обращения информации.
- •6.Виды информации. Устранение избыточности информации.
- •5.Структура измерительной информационной системы
- •17.Комбинаторная мера.
- •3.Корреляционный метод фильтрации.
- •10.Демодуляция гармонических колебаний
- •7.Частотная фильтрация
- •9.Модуляция гармонических колебаний
- •8.Меры информации: структурные.
- •11.Статистические меры информации
- •12.Временное разделение каналов
- •13.Семантические меры информации
- •14.Временная фильтрация
- •15.Геометрическая мера
- •16.Квантование сигнала по времени.
- •19.Квантование сигналов по уровню.
- •20.Аддитивная мера Хартли.
- •21.Фильтрация сигналов.
- •22.Импульсные виды модуляции.
- •23. Вероятность и информация.
- •24.Частотное разделение каналов
- •25.Представление импульсных модулированных колебаний во временной и частотной областях
- •26.Энтропия, количество информации по Шеннону.
- •27.Амплитудная модуляция.
- •28.Сигналы и их характеристики.
- •Характеристики сигналов
- •29.Фазовое разделение каналов.
- •30.Виды модуляции: амплитудная балансная
- •31.Детерминированные колебания, их классификация.
- •32.Кодовое разделение каналов
- •33. Частотная модуляция
- •36.Корреляционное разделение каналов
- •34. Теорема Котельникова
- •35. Аналитическое описание периодических сигналов во временной и частотной областях
- •37. Фазовая модуляция
- •38. Аналитическое описание импульсных сигналов во временной и частотной областях.
- •41. Частотная фильтрация.
- •43 . Базисные функции.
- •45. Демодуляция чм гармонических колебаний
- •54) Корреляционная функция
- •48. Случайные величины и процессы
- •49. Частотно-импульсная модуляция. Спектр и полоса частот
- •51. Амплитудно-импульсная модуляция. Спектр и полоса частот
- •52) Передача информации
- •50. Эргодические процессы.
- •55) Широтно-импульсная модуляция. Спектр и полоса частот.
- •56) Угловые виды модуляции.
- •62. Спектр чим колебаний.
- •59. Аналитическое описание импульсных сигналов во временной и частотной областях.
- •57. Информационное содержание сигнала.
- •61. Способы повышения помехоустойчивости.
- •58. Спектры случайных колебаний.
55) Широтно-импульсная модуляция. Спектр и полоса частот.
Широтно-импульсная модуляция (ШИМ, англ.Pulse-width modulation (PWM)) — приближение желаемого сигнала (многоуровневого или непрерывного) к действительным бинарным сигналам (с двумя уровнями - вкл/выкл), так, что, в среднем, за некоторый отрезок времени, их значения равны. Формально, это можно записать так:
,
где x(t) - желаемый входной сигнал в пределе от t1 до t2, а ∆Ti - продолжительность i -го ШИМ импульса, каждого с амплитудой A. ∆Ti подбирается таким образом, что суммарные площади (энергии) обеих величин приблизительно равны за достаточно продолжительный промежуток времени, равны также и средние значения величин за период:
.
Управляемыми "уровнями", как правило, являются параметры питания силовой установки, например, напряжение импульсных преобразователей /регуляторов постоянного напряжения/или скорость электродвигателя. Для импульсных источников x(t) = Uconst стабилизации.
Основной причиной внедрения ШИМ является сложность обеспечения произвольным напряжением. Есть некое базовое постоянное напряжение питания (в сети, от аккумуляторов и пр.) и на его основе нужно получить более низкое произвольное и уже им запитывать электродвигатели или иное оборудование. Самый простой вариант - делитель напряжения, но он обладает пониженным КПД, повышенным выделением тепла и расходом энергии. Другой вариант - транзисторная схема. Она позволяет регулировать напряжение без использования механики. Проблема в том, что транзисторы греются больше всего в полуоткрытом состоянии (50%). И если с таким КПД ещё "можно жить", то выделение тепла, особенно в промышленных масштабах сводит всю идею на нет. Именно поэтому было решено использовать транзисторную схему, но только в пограничных состояниях (вкл/выкл), а полученный выход сглаживать LC-цепочкой (фильтром) при необходимости. Такой подход весьма энергоэффективен. ШИМ широко применяется повсеместно. Если вы читаете эту статью на LCD-мониторе (телефоне/КПК/... с LCD-подсветкой), то яркость подсветки регулируется ШИМ. На старых мониторах можно убавить яркость и услышать как ШИМ начинает пищать (очень тихий писк частотой в несколько килогерц). Так же "пищат" плавно мигающие LED-лампочки, например, в ноутбуках. Очень хорошо слышно пищание ШИМ по ночам в тишине.
В качестве ШИМ можно использовать даже COM-порт. Т.к. 0 передаётся как 0 0000 0000 1 (8 бит данных + старт/стоп), а 255 как 0 1111 1111 1, то диапазон выходных напряжений - 10-90% с шагом в 10%.
ШИП
— широтно-импульсный преобразователь,
генерирующий ШИМ-сигнал по заданному
значению управляющего напряжения.
Основное достоинство ШИП — высокий КПДего усилителей мощности, который
достигается за счёт использования их
исключительно в ключевом режиме. Это
значительно уменьшает выделение мощности
на силовом преобразователе (СП). ШИМ
используеттранзисторы(могут быть и др. элементы) не в активном
(правильнее будет сказать - линейном),
а в ключевом режиме, то есть транзистор
всё время или разомкнут (выключен), или
замкнут (находится в состоянии насыщения).
В первом случае транзистор имеет почти
бесконечное сопротивление, поэтому ток
в цепи почти не течёт, и, хотя всё
напряжение питания падает на транзисторе,
то есть КПД=0 %, в абсолютном выражении
выделяемая на транзисторе мощность
равна нулю. Во втором случае сопротивление
транзистора крайне мало, и, следовательно,
падение напряжения на нём близко к нулю
— выделяемая мощность так же мала.
Изменяется ширина или длительность
импульсов переносчика за счет положения
заднего импульса. Частота и амплитуда
при ШИМ не изменяется. Помехоустойчивость
ШИМ значительно выше АИМ, и ШИМ широко
распределена в ТИ. При ШИМ необходимо
выбирать полосу частот по наиболее
короткому импульсу ()
Спектр частот ШИМ аналогичен спектру АИМ с той лишь разницей, что при ШИМ вокруг каждой гармоники имеется на две (как при АИ), а несколько пар боковых частот.
Используются и другие разновидности ШИМ, когда изменяется положение переднего фронта импульсов при неизменном положении заднего фронта или изменяется положение обоих фронтов.