
- •Вопрос 6) константы макро- и микромира.
- •19) Электромагнитное явление эффект джозефсона и его применение. Описание эффекта
- •Стационарный эффект
- •Нестационарный эффект
- •Применение эффекта
- •Магнитный резонанс
- •Металлический термометр сопротивления
- •Термисторы
- •Зависимость сопротивления от температуры
- •Преимущества термометров сопротивления
- •Недостатки термометров сопротивления
Магнитный резонанс
Магнитный резонанс, избирательное поглощение веществом электромагнитных волн определённой длины волны, обусловленное изменением ориентации магнитных моментов электронов или атомных ядер. Энергетические уровни частицы, обладающей магнитным моментом m, во внешнем магнитном поле Нрасщепляются на магнитные подуровни, каждому из которых соответствует определённая ориентация магнитного момента m относительно поля Н (см.Зеемана эффект). Электромагнитное поле резонансной частоты w вызывает квантовые переходы между магнитными подуровнями. Условие резонанса имеет вид:
,
где —
разность энергий между магнитными
подуровнями,
— Планка
постоянная.
Если поглощение электромагнитной энергии осуществляется ядрами, то М. р. называется ядерным магнитным резонансом, ЯМР. Магнитные моменты ядер обусловлены их спинами I. Число ядерных магнитных подуровней равно 2I + 1, а расстояния между соседними подуровнями одинаковы и равны:
,
где g — магнитомеханическое отношение. Отбора правила допускают переходы только между соседними подуровнями, поэтому всем переходам соответствует одинаковая резонансная частота (рис.), линии поглощения перекрываются и наблюдается одна линия.
Однако в некоторых кристаллах для ядер со спином I > 1 возникает дополнительное смещение уровней, вызванное взаимодействием электрическогоквадрупольного момента ядра с внеядерным неоднородным внутрикристаллическим электрическим полем Е в месте расположения ядра (см.Кристаллическое поле). В результате этого в спектре поглощения появляются дополнительные линии (см. Ядерный квадрупольный резонанс, ЯКР).
М. р., обусловленный магнитными моментами электронов в парамагнетиках, называется электронным парамагнитным резонансом (ЭПР). Спектр ЭПР зависит как от спина, так и от орбитального движения электронов, входящих в состав парамагнитных атомов и молекул, и обычно чувствителен к внутрикристаллическому полю в месте расположения парамагнитной частицы. Вферромагнетиках и антиферромагнетиках электронный М. р. называется соответственно ферромагнитным резонансом и антиферромагнитным резонансом.
Во многих случаях полезно классическое описание М. р., основанное на том, что магнитный момент частицы m испытывает во внешнем магнитном поле Н Лармора прецессию около направления вектора Н с частотой w = gН. Переменное магнитное полеH1, перпендикулярное Н и вращающееся синхронно с m, то есть с частотой w, оказывает постоянное воздействие на магнитный момент, которое и ведёт к изменению его ориентации в пространстве.
К М. р. иногда относят также наблюдаемый в металлах и полупроводниках, помещенных в постоянное магнитное поле, циклотронный резонанс — резонансное поглощение электромагнитной энергии, связанное с периодическим движениемэлектронов проводимости и дырок в плоскости, перпендикулярной полю Н (см.Лоренца сила, Диамагнетизм).
Диапазон частот М. р. определяется величиной магнитомеханического отношения. Для свободного электрона g/2p = 2,799´106гц·э -1, для протона g/2p = 4,257´103гц·э -1, для других ядер, обладающих спином, g/2p = 102—103 гц·э -1. В соответствии с этим в магнитных полях ~ 103—104э частоты ЭПР попадают в диапазон СВЧ (109—1011гц), а ЯМР — в диапазон коротких волн (106—107гц).
58) Термо́метр сопротивле́ния — электронный прибор, предназначенный для измерения температуры. Принцип действия основан на зависимости электрического сопротивления металлов, сплавов иполупроводниковых материалов от температуры[1]. При применении полупроводниковых материалов его обычно называют термосопротивле́нием, терморезистором или термистором[2].