
- •1) Понятие жидкости. Реальная и идеальная жидкости
- •2) Метод гидравлических исследований.
- •3) Силы, действующие на жидкость. Понятие давления
- •4) Основные свойства жидкостей
- •5) Гидростатическое давление и его свойства
- •6) Уравнение равновесия
- •7) Абсолютное и избыточное (манометрическое) давление. Барометры и манометры
- •8) Вакуум. Пьезометры и вакуумметры
- •9) Основное уравнение гидростатики. Потенциальная удельная энергия жидкости
- •10) Потенциальный (пьезометрический) напор.
- •11) Силы давления на плоские и кривые поверхности.
- •12) Понятие о движении жидкости как непрерывной деформации сплошной материальной среды.
- •13) Установившееся и неустановившееся движение жидкости. Напорное и безнапорное течение.
- •14) Линии токов жидкости и вихревые линии. Плавно и резко изменяющееся движение.
- •15) Элементарная струйка, поток жидкости, живое сечение. Гидравлический радиус, расход и средняя скорость.
- •16) Уравнение неразрывности. Понятие расхода.
- •17) Распределение сил в сплошной среде. Объемные и поверхностные силы.
- •18) Уравнение Бернулли для установившегося движения жидкости.
- •19) Геометрическая и энергетическая интерпретация уравнения Бернулли.
- •20) Полный (гидродинамический) напор.
- •22) Числа Рейнольдса, Фруда, Эйлера, Вебера
- •23) Понятие о гидравлических сопротивлениях, виды потерь напора (местные и по длине).
- •24) Общая формула для потерь напора по длине при установившемся равномерном движении жидкости. Коэффициент Дарси.
- •29) Основное уравнение равномерного движения.
- •26) Ламинарный и турбулентный режимы движения жидкости. Критическое число Рейнольдса.
- •27) Пульсации скоростей при турбулентном режиме, мгновенная и осредненная местные скорости.
- •28) Потери напоры по длине при ламинарном равномерном движении жидкости.
- •29) Распределение скоростей по живому сечению в цилиндрической трубе при ламинарном режиме. Коэффициент Дарси при ламинарном движении.
- •30) Потери напора при турбулентном равномерном движении жидкости
- •32) Коэффициент Дарси при турбулентном движении жидкости, экспериментальные методы его определения.
- •33 График Никурадзе.
- •34) Местные сопротивления, основные их виды.
- •Обьемные гидромашины.
- •1. Понятие объемной гидромашины. Насосы, гидродвигатели.
- •2.Принципиальные схемы объемных гидромашин (огм).
- •3. Классификация огм
- •4.Виды возвратно-поступательных и роторных гидромашин
- •5, 6 Основные признаки роторных гидромашин. Основные термины и их определения
- •7. Величины, характеризующие рабочий процесс огм: подача (расход), рабочий объем, давление, мощность, кпд, частота вращения, крутящий момент
- •8. Классификация, конструктивные схемы и принцип действия огм
- •9. Шестеренные насосы с внешним и внутренним зацеплением
- •10. Винтовые машины. Шиберные (пластинчатые) гидромашины однократного и многократного действия
- •11.Радиально-поршневые гидромашины
- •12.Аксиально-поршневые гидромашины, основные их схемы
- •13 Лопастные гидромашины (центробежный насос)
- •2.Гидродроссели и дросселирующие дроссели. Постоянные дроссели. Ламинарные и турбулентные гидрораспределители. Дроссельные регуляторы
- •3.Струйный гидрораспределитель. Гидроклапаны. Типы клапанов: переливной, предохранительный, редукционный. Течения в них. Расчет гидроклапанов.
- •4.Объемное регулирование скорости выходного звена гидропривода. Дроссельное регулирование скорости выходного звена гидропривода при последовательном и параллельном включении дросселя.
- •5.Сравнение способов регулирования гидроприводов
- •6.Дроссельный способ регулирования огп с установкой дросселя на входе в гидродвигатель, на выходе из гидродвигателя и параллельно гидродвигателю
- •8) Статические характеристики объемного гидропривода с дроссельным регулированием.
- •62) Энергетические характеристики гидропривода.
- •10,11) Методы измерения параметров объемных гидроприводов. Измерение давления, расхода, температуры рабочих сред, частоты вращения и крутящего момента.
- •2.1. Измерение давления
22) Числа Рейнольдса, Фруда, Эйлера, Вебера
№№ Название |
Выражение |
Область применения |
1. Число Фруда |
|
Относится к действию сил тяжести |
2. Число Рейнольдса |
|
Относится к действию сил вязкости |
3. Число Вебера |
|
Относится к действию сил поверхностного натяжения |
4. Число Эйлера |
|
Учитывается при наличии сил давления |
23) Понятие о гидравлических сопротивлениях, виды потерь напора (местные и по длине).
Потери удельной энергии (напора), или, как их часто называют, гидравлические потери, зависят от формы, размеров русла, скорости течения и вязкости жидкости, а иногда и от абсолютного давления в ней. Гидравлические потери обычно разделяют на местные потери и потери на трение по длине.
Местные потери энергии обусловлены так называемыми местными гидравлическими сопротивлениями, т.е. местными изменениями формы и размеры русла, вызывающими деформацию потока. При протекании жидкости через местные сопротивления изменяется её скорость и обычно возникают крупные вихри.
Местные сопротивления напора определяются по формуле следующим образом:
или в единицах давления
В ней V - средняя по сечению скорость в трубе, в которой установлено данное местное сопротивление.
Потери на трение по длине - это потери энергии, которые в чистом виде возникают в прямых трубах постоянного сечения, т.е. при равномерном течении, и возрастают пропорционально длине трубы.
Потерю напора на трение можно выразить по общей формуле для гидравлического потерь, т.е.
или
24) Общая формула для потерь напора по длине при установившемся равномерном движении жидкости. Коэффициент Дарси.
Как показывают опыты, во многих, но не во всех случаях гидравлические потери приблизительно пропорциональны скорости течения жидкости во второй степени, поэтому в гидравлике принят следующий общий способ выражения гидравлических потерь полного напора в линейных единицах:
,
или в единицах давления (1.55)
(1.56)
Такое
выражение удобно тем, что включает в
себя безразмерный коэффициент
пропорциональности
,
называемый коэффициентом
потерь Дарси или
коэффициентом сопротивления.
29) Основное уравнение равномерного движения.
гидравлические сопротивления по длине потока hл.
hл = или .
Это основное уравнение равномерного движения жидкости, которое показывает, что напряжение силы трения, отнесенное к единице веса жидкости, равно произведению гидравлического радиуса на гидравлический уклон потока.
26) Ламинарный и турбулентный режимы движения жидкости. Критическое число Рейнольдса.
Опыты показывают, что возможны два режима или два вида течения жидкостей и газов в трубах: ламинарный и турбулентный.
Ламинарным называется слоистое течение без перемешивания частиц жидкости и без пульсаций скоростей и давления. При таком течении все линии тока определяются формой русла, по которому течёт жидкость. При ламинарном течении жидкости в прямой трубе постоянного течения все линии тока направлены параллельно оси трубы, т.е. прямолинейно; отсутствуют поперечные перемещения жидкости.
Турбулентным называется течение, сопровождающееся интенсивным перемешиванием жидкости и пульсациями скоростей и давлений. Движение отдельных частиц оказывается подобным хаотическому, беспорядочному движению молекул.
Режим
течения данной жидкости изменяется в
данной трубе примерно при определённой
средней по сечению скорости течения
Vкр,
которую называют критической. Как
показывают опыты, значение этой скорости
прямо пропорционально кинематической
вязкости
и обратно пропорционально диаметру d
трубы, т.е.
Этот
результат согласуется с изложенной
выше теорией гидродинамического подобия,
и вполне закономерно, что именно число
Рейнольдса является критерием,
определяющим режим течения в трубах.
Как
показывают опыты, для труб круглого
сечения
.
Таким
образом, критерий подобия Рейнольдса
позволяет судить о режиме течения
жидкости в трубе. При
течение является ламинарным, при
-
турбулентным.
Смена режима течения обусловлена тем, что одно течение при достижении критического числа Рейнольдса теряет устойчивость, а другое - приобретает.