
- •1.Межатомное взаимодействие. Влияние энергии межатомного взаимодействия на свойства материалов.
- •2. Химическое взаимодействие атомов. Влияние типа химической связи на свойства материалов
- •3. Точечные дефекты кристаллической решетки. Термодинамика точечных дефектов. Влияние точечных дефектов на свойства материалов.
- •4. Линейные дефекты кристаллических решеток. Влияние линейных дефектов на свойства материалов.
- •1.4.2 Линейные дефекты кристаллической решетки.
- •5. Поверхностные дефекты кристаллических решеток. Влияние поверхностных дефектов на свойства материалов
- •1.4.5 Энергетические дефекты кристаллической решетки.
- •7. Материалы высокой проводимости. Требования к материалам высокой проводимости. Принципы получения материалов высокой проводимости.
- •8. Металлические материалы высокого удельного сопротивления. Требования предъявляемы е к таким материалам. Принципы получения материалов высокого удельного сопротивления.
- •9 Принципы выбора материалов для разрывных контактов
- •10 Принципы выбора материалов для скользящих контактов.
- •11. Принципы выбора материалов для зажимных контактов.
- •12. Принципы выбора материалов для цельнометаллических контактов.
- •13. Влияние напряженности электрического поля на электропроводность диэлектриков.
- •14. Влияние температуры на электропроводность диэлектриков.
- •15. Механизмы поляризации диэлектриков.
- •16. Влияние температуры и частоты на диэлектрическую проницаемость материалов с различными видами поляризации.
- •18 Тангенс угла диэлектрических потерь, Влияние температуры, частоты поля, природы материала на величину тангенса угла потерь
- •2.3.2 Влияние частоты электрического поля на тангенс угла потерь неполярных диэлектриков.
- •2.3.3 Влияние температуры на тангенс угла потерь в полярных диэлектриках
- •2.3.4. Влияние частоты электрического поля на тангенс угла диэлектрических потерь для полярных диэлектриков
- •19. Природа электрохимического пробоя диэлектриков. Влияние состава на стойкость к электрохимическому пробою диэлектриков.
- •20. Природа электротеплового пробоя диэлектриков.
- •21. Природа электрического пробоя диэлектриков. Влияние агрегатного состояния на стойкость к электрическому пробою. Электрический пробой газов
- •22. Активные диэлектрики. Применение активных диэлектриков.
- •23. Природа ферромагнетизма, диамагнетизма и парамагнетизма.
- •24.Влияние напряженности магнитного поля на величину магнитной индукции.
- •25. Принципы получения магнитомягких материалов.
- •1. Межатомное взаимодействие, влияние энергии межатомного взаимодействия на свойства материалов.
- •2.Типы химических связей между атомами, влияние типа связи на свойства материалов.
- •3. Точечные дефекты кристаллической решетки. Влияние точечных дефектов не свойства материалов.
- •4. Линейные дефекты кристаллической решетки, влияние линейных дефектов на свойства материалов.
- •5. Поверхностные дефекты кристаллической решетки, влияние поверхностных дефектов на свойства материалов.
- •6. Объемные дефекты кристаллических решеток. Влияние объемных дефектов на свойства материалов.
- •7. Металлические материалы высокой электропроводности.
- •Принципы выбора материалов высокой электропроводности.
- •8. Металлические материалы высокого сопротивления.
- •9. Принципы выбора материалов для разрывных контактов.
- •10. Принципы выбора материалов для скользящих контактов.
- •11. Принципы выбора материалов для зажимных контактов.
- •13. Влияние напряженности электрического поля на электропроводность диэлектриков.
- •14. Влияние температуры на электропроводность диэлектриков и проводников.
- •15. Поляризация диэлектриков, виды поляризации, механизмы поляризации. Влияние внешних условий на поляризацию диэлектриков.
- •16.Влияние температуры на диэлектрическую проницаемость диэлектриков с ионной связью.
- •18. Потери энергии электрического поля в диэлектриках. Влияние внешних условий и особенностей строения диэлектриков на тангенс угла диэлектрических потерь
- •17 18. Влияние частоты электрического поля на тангенс угла потерь полярных и неполярных диэлектриков
- •1. Влияние частоты электрического поля на тангенс угла потерь неполярных диэлектриков.
- •2. Влияние частоты электрического поля на тангенс угла диэлектрических потерь для полярных диэлектриков
- •Влияние частоты электрического поля на тангенс угла потерь полярных и неполярных диэлектриков
- •1. Влияние частоты электрического поля на тангенс угла потерь неполярных диэлектриков.
- •2. Влияние частоты электрического поля на тангенс угла диэлектрических потерь для полярных диэлектриков
- •19. Электрохимический пробой диэлектриков.
- •20. Электротепловой пробой диэлектриков.
- •21. Природа электрического пробоя диэлектриков. Механизмы электрического пробоя.
- •22. Особенности поляризации в активных диэлектриках
- •23. Природа ферромагнетизма.
- •24. Влияние напряженности магнитного поля на величину магнитной индукции
- •25.Принципы получения магнитомягких материалов
- •26.Принципы получения магнитотвердых материалов
3. Точечные дефекты кристаллической решетки. Влияние точечных дефектов не свойства материалов.
К ним относятся атомы инородных элементов (легирующих элементом или примесей), межузельные атомы (атомы основного элемента, по каким-либо причинам покинувшие узлы кристаллической решетки и застрявшие в междоузлиях), вакансии или не занятые атомами узлы кристаллической решетки.
Представление о вакансиях было впервые введено Я. И. Френкелем для объяснения процессов диффузии в металлах - материалах с плотноупакованной кристаллической решеткой.
При наличии в кристаллической решетки вакансии атом может перескочить из узла решетки в вакантное место. Тем самым вакансия смещается, и процесс диффузии можно описывать как последовательное перемещение атомов или как движение вакансий.
Согласно модели Френкеля, при образовании вакансий атом из узла кристаллической решетки перепрыгивает в междоузлие, и появляется пара дефектов - вакансия и межузельный атом, или пара Френкеля.
В материалах с ионной связью между атомами основным носителем заряда являются ионы. При появлении вакансий перемещение ионов облегчается, а следовательно, падает удельное электросопротивление. При появлении в материале примесей кристаллическая решетка искажается, энергия материала локально повышается, что способствует облегчению выхода иона из потенциальной ямы. Таким образом, появление любых точечных дефектов ведет к снижению электросопротивления материалов с ионной связью.
В материалах с ковалентной связью присутствие вакансий приводит к обрыву ковалентной связи и появлению на валентной оболочке атома неспаренного электрона. Наличие неспаренных электронов энергетически невыгодно, и атом теряет его. Таким образом, в материале появляются два носителя заряда: отрицательно заряженный свободный (делокализованный) электрон и положительно заряженная дырка. Следовательно, увеличение концентрации вакансий ведет к падению удельного электрического сопротивления материалов с ковалентной связью.
Присутствие неизовалентных примесей ведет к появлению в материале дырок или свободных электронов, то есть к повышению концентрации носителей заряда.
4. Линейные дефекты кристаллической решетки, влияние линейных дефектов на свойства материалов.
Дислокации
- линейные дефекты кристаллической
решетки.
Краевая дислокация. В кристалле имеется оборванная плоскость - экстраплоскость. Вблизи обрыва экстраплоскости остальные плоскости кристаллической решетки изгибаются. Таким образом, вблизи края экстраплоскости кристаллическая решетка искажена. Величина искажений кристаллической решетки быстро снижаются при удалении от края экстраплоскости, но сохраняется при движении вдоль линии обрыва.
Винтовая
дислокация:
Особенности вектора Бюргерса:
вектор Бюргерса инвариантен, то есть неизменен. Следовательно, дислокация не может оборваться в кристалле;
энергия упругих искажений решетки пропорциональна квадрату модуля вектора Бюргерса;
при движении решеточной дислокации с вектором Бюргерса, равным периодутрансляции решетки, кристаллическая решетка не изменяется.
При приложении внешних напряжений дислокации смещаются и выходят на поверхность кристалла, и таким образом осуществляется пластическая деформация.
Влияние дислокаций на свойства:
При полном отсутствии дислокаций прочность кристаллов была бы равна теоретической. Важно отметить, что при повышении плотности дислокаций в обычных материалах их прочность возрастает. Повышение прочности металлов в ходе холодной пластической деформации называют наклепом, или нагартовкой.
Наличие
в материале дислокаций резко повышает
скорость диффузии.
Искажение кристал-лической решетки за счет присутствия дислокаций повышает удельное электри-ческое сопротивление металлических материалов и снижает удельное электрическое сопротивление неметаллических материалов.