
- •1. Введение в информатику
- •1.1. Информатика как научная дисциплина
- •1.2. Понятие информации
- •1.3. Основные свойства информации
- •1.4. Общая характеристика процессов сбора, передачи, обработки и накопления информации
- •2. Количество информации. Формы представления информации
- •2.1. Количество информации
- •2.2. Единицы измерения количества информации
- •2.3. Формы представления информации
- •2.3.1. Язык как знаковая система
- •2.3.2. Кодирование информации
- •2.3.3. Двоичная система счисления
- •2.3.4. Двоичное кодирование информации в компьютере
- •3. Технические средства реализации информационных процессов. Персональный компьютер
- •3.1. Архитектура персональных компьютеров
- •3.2. Функциональная схема компьютера
- •4. Состав аппаратного обеспечения персонального компьютера
- •4.3. Устройства ввода информации
- •4.4. Устройства вывода информации
- •5. Принципы построения вычислительных сетей
- •5.1. Программные и аппаратные компоненты вычислительной сети
- •5.2. Локальные и глобальные сети эвм
- •6. Программные средства реализации информационных процессов
- •6.1. Системное и прикладное программное обеспечение
- •6.2. Операционные системы
- •6.2.1. Понятие, основные функции и составные части операционной системы
- •6.2.2. Классификация операционных систем
- •6.2.3. Операционная система ms dos
- •6.2.4. Командный процессор Command.Com
- •6.2.5. Операционные системы Windows
- •7. Файловые системы
- •7.1. Основные функции файловой системы
- •7.2. Файлы и каталоги
- •7.3. Физическая организация данных на носителе
- •Текстовые редакторы, процессоры
- •4.2.2. Текстовый npoцeccop WordPad
- •4.2.3. Текстовый npoцeccop Word
- •4.3.1. Общие сведения о табличном процессоре Excel
- •4.3.2. Создание таблиц
- •4.3.3. Работа с формулами, диаграммами, списками
- •10. Базы данных
- •10.1. Понятие базы данных
- •10.2. Модели организации данных
- •11. Основы защиты информации и сведений, составляющих государственную тайну. Методы защиты информации
- •Библиографический список
2. Количество информации. Формы представления информации
2.1. Количество информации
Процесс систематического научного познания окружающего мира приводит к накоплению информации в форме знаний. Таким образом, с точки зрения процесса познания информация может рассматриваться как знания.
Информация, которую получает человек, можно считать мерой уменьшения неопределенности знаний. Если некоторое сообщение приводит к уменьшению неопределенности наших знаний, то можно говорить, что такое сообщение содержит информацию.
Например, вы сдаете экзамен по информатике. Сдав свою работу, вы ждете оценки и находитесь в состоянии неопределенности. Наконец, экзаменатор сообщает результаты экзамена, вы узнаете свою оценку, то есть получаете сообщение, которое приносит полную определенность. Происходит переход от полного незнания к знанию, а значит, сообщение экзаменатора содержит информацию.
Подход к информации, как мере уменьшения неопределенности знаний позволяет количественно измерять информацию, что очень важно для информатики.
Еще один пример. Пусть у нас имеется монета, которую мы бросаем на ровную поверхность. С равной вероятностью произойдет одно из двух возможных событий – монета окажется в одном из двух положений: «орел» или «решка».
Перед подбрасыванием существует неопределенность наших знаний, так как возможны два события, и как упадет монета предсказать невозможно. После подбрасывания наступает полная определенность, так как мы получаем зрительное сообщение, что монет приняла какое-то одно из двух положений, например «орел». Это сообщение приводит к уменьшению неопределенности наших знаний в два раза, так как до броска мы имели два вероятных событий, а после броска только одно, то есть в два раза меньше.
Вообще, чем больше количество возможных событий, тем больше начальная неопределенность и соответственно тем большее количество информации будет содержать сообщение о результатах опыта.
2.2. Единицы измерения количества информации
За единицу количества информации принимается такое количество информации, которое содержит сообщение, уменьшающее неопределенность в два раза. Такая единица называется «бит». Произошло от английского словосочетания binary digit (двоичная цифра).
Бит – количество информации, необходимой для различения двух равновероятных сообщений, наименьшая «порция» памяти, необходимая для хранения одного из двух знаков «0» и «1», используемых для внутримашинного представления данных и команд.
В примере с монетой количество информации, которое мы получаем, равно 1 биту.
Бит – это минимальная единица измерения количества информации. Следующей по величине единицей является байт.
1 байт = 8 бит.
В информатике система образования кратных единиц измерения количества информации отличается от систем, принятых в большинстве наук. Международная система единиц СИ в качестве множителей кратных единиц использует коэффициент 10n, где n = 3,6,9 и так далее, что соответствует десятичным приставкам Кило (103), Мега (106), Гига (109) и так далее.
В компьютере используются числа не в десятичной, а в двоичной системе исчисления, поэтому в кратных единицах измерения количества информации используется коэффициент 2n. Кратные байту единицы измерения количества информации выводятся следующим образом:
1 Килобайт (Кбайт) = 1024 байт = 210 байт;
1 Мегабайт (Мбайт) = 1024 Кбайт = 220 байт;
1 Гигабайт (Гбайт) = 1024 Мбайт = 230 байт;
1 Терабайт (Тбайт) = 1024 Гбайт = 240 байт;
1 Петабайт (Пбайт) = 1024 Тбайт = 250 байт.
Существует формула, которая связывает между собой количество возможных равновероятных (как в случае подбрасывания монеты) событий N и количество информации I:
I = log2N. (2.1)
По этой формуле легко определить количество информации, если известно количество возможных событий. Наоборот, для определения количества равновероятных событий, если известно количество информации, необходимо решить уравнение:
N = 2I. (2.2)
Пример.
1. Пусть изображение на экране содержит 128х64 точек и каждая точка может иметь один из 256 оттенков. Определить минимальный объем памяти, необходимый для хранения этого изображения.
Решение. Всего точек на экране 128*64 = 8192. Каждый цвет можно рассматривать как возможное состояние точки. Тогда количество цветов, отображаемых на экране монитора, может быть вычислено по формуле (2.1):
I = log2 256 = 8 бит.
Необходимый объем памяти равен
8 бит * 8192 = 65536 бит = 8192 байт = 8 Кбайт.
2. В игре «крестики-нолики» на поле 8х8 перед ходом существует 64 возможных события. Определить количество информации, полученное вторым игроком после первого хода первого игрока.
Решение. Уравнение (2.2) принимает вид:
64 = 2I.
Так как 64 = 26, то получаем 26 = 2I.
Таким образом, I = 6 бит, то есть количество информации, полученное вторым игроком после первого хода первого игрока, составляет 6 бит.