Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Мистерии сибирской язвы (учебник)

.pdf
Скачиваний:
0
Добавлен:
19.02.2026
Размер:
38.14 Mб
Скачать

298.Liu X., Qi X., et al. Genome sequence of Bacillus anthracis attenuated vaccine strain A16R used for human in China. J Biotechnol. 2015; 210:15–16; DOI: 10.1016/j.jbiotec.2015.06.408.

299.Liu Y., Lai Q., et al. Genome analysis-based reclassification of Bacillus weihenstephanensis as a later heterotypic synonym of Bacillus mycoides. Int J Syst Evol Microbiol. 2018; 68(1):106–112; DOI: 10.1099/ijsem.0.002466.

300.Liy Y., Du J., et al. Proposal of nine novel species of the Bacillus cereus group. Int J Syst Evol Microbiol. 2017; 67(8):2499–2508; DOI: 10.1099/ijsem.0.001821.

301.Low L.-Y., Yang C., et al. Structure and lytic activity of a Bacillus anthracis prophage endolysin. J Biol Chem. 2005; 280(42):35433–35439; DOI: 10.1074/jbc.M502723200.

302.Luna V. A., King D. S., et al. Bacillus anthracis virulent plasmid pX02 genes found in large plasmids of two other Bacillus species. J Clin Microbiol. 2006; 44(7):2367–2377; DOI: 10.1128/JCM.00154–06.

303.Lund T., de Buyser M. L., et al. A new cytotoxin from Bacillus cereus that may cause necrotic enteritis. Mol Microbiol. 2000; 38(2):254–261; DOI: 10.1046/j.1365– 2958.2000.02147.x.

304.Lund T., Granum P. E. Characterisation of a non-haemolytic enterotoxin complex from Bacillus cereus isolated after a foodborne outbreak. FEMS Microbiol Lett. 1996; 141(2– 3):151–156; DOI: 10.1111/j.1574–6968.1996.tb08377.x.

305.Luo J.-C., Long H., et al. Characterization of a Deep Sea Bacillus toyonensis isolate: genomic and pathogenic features. Front Cell Infect Microbiol. 2021; 11:629116; DOI: 10.3389/fcimb.2021.629116.

306.M’Fadyean J. A peculiar staining reaction of the blood of animals dead of anthrax. J Comp Pathol Ther. 1903; 15:35–IN1.

307.Ma W., Ding J., et al. A novel strain of Bacillus cereus with a strong antagonistic effect specific to Sclerotinia and its genomic and transcriptomic analysis. Microorganisms. 2024; 12(3):611; DOI: 10.3390/microorganisms12030611.

308.Mabry R., Brasky K., et al. Detection of Anthrax toxin in the serum of animals infected with Bacillus anthracis by using engineered immunoassays. Clin Vaccine Immunol. 2006; 13(6):671–677; DOI: 10.1128/CVI.00023–06.

309.Machen A. J., Fisher M. T., et al. Anthrax toxin translocation complex reveals insight into the lethal factor unfolding and refolding mechanism. Sci Rep. 2021; 11:13038; DOI: 10.1038/s41598–021–91596–3.

310.Mahler H., Pasi A., et al. Fulminant liver failure in association with the emetic toxin of Bacillus cereus. N Engl J Med. 1997; 336(16):1142–1148; DOI: 10.1056/NEJM199704173361604.

311.Mamatkulova N. M., Zholdoshev S. T., et al. A case study on anthrax in an eight-month old infant at Kyrgyz Republic. Bioinformation. 2024; 20(3):301–304; DOI: 10.6026/973206300200301.

312.Manoharan S., Taylor-Joyce G., et al. From cereus to anthrax and back again: Assessment of the temperature-dependent phenotypic switching in the "cross-over" strain Bacillus cereus G9241. Front Microbiol. 2023; 14:1113562; DOI: 10.3389/fmicb.2023.1113562.

313.Marchoux É. Sérum anticharbonneux. Ann. Inst. Pasteur. 1895; 9:785–810.

314.Marongiu A., Hasan O., et al. Are welders more at risk of respiratory infections? Findings from a cross-sectional survey and analysis of medical records in shipyard workers: the WELSHIP project. Thorax. 2016; 71(7):601–606; DOI: 10.1136/thoraxjnl-2015–207912.

450

315.Mattes O. Parasitäre Krankheiten der Mehlmottenlarven und Versuche über ihre Verwendbarkeit als biologische Bekämpfungsmittel. SitzB. Ges. Beförd. ges. Naturwissensch.

Marburg. 1927; 62:381–417.

316.Mayer-Scholl A., Hurwitz R., et al. Human neutrophils kill Bacillus anthracis. PLoS Pathog. 2005; 1(3):e23; DOI: 10.1371/journal.ppat.0010023.

317.Mayo L., Dionne-Odom J., et al. Gastrointestinal anthrax after an animal-hide drumming event – New Hampshire and Massachusetts, 2009. MMWR. 2010; 59(28):872–877.

318.McCloy E. W. Lysogenicity and immunity to Bacillus phage W. J Gen Microbiol. 1958; 18(1):198–220; DOI: 10.1099/00221287–18–1–198.

319. McCloy E. W. Studies on a lysogenic Bacillus strain. I. A bacteriophage specific for

B. anthracis. J Hygiene. 1951; 49(2):114–125; DOI: 10.1017/s0022172400015412.

320.McCloy E. W. Unusual behaviour of a lysogenic Bacillus strain. J Gen Microbiol. 5:xivxvi.

321.McFarland J. The nephelometer: an instrument for estimating the numbers of bacteria in suspensions used for calculating the opsonic index and vaccines. J Am Med Assoc. 1907; 49:1176–1178.

322.McKinley T., Burnham B., et al. Surely you can't B. cereus: Bacillus cereus infection resulting in spontaneous pseudoaneurysm of a nonaccessed arteriovenous graft. J Vasc Surg Cases Innov Tech. 2023; 9(4):101333; DOI: 10.1016/j.jvscit.2023.101333.

323.Meaney-Delman D., Zotti M. E., et al. Anthrax cases in pregnant and postpartum women: a systematic review. Obstet Gynecol. 2012; 120(6):1439–1449; DOI: 10.1097/aog.0b013e318270ec08.

324.Meaney-Delman D., Zotti M. E., et al. Special considerations for prophylaxis for and treatment of anthrax in pregnant and postpartum women. Emerg Infect Dis. 2014; 20(2):e130611; DOI: 10.3201/eid2002.130611.

325.Melling J., Capel B. J., et al. Identification of a novel enterotoxigenic activity associated with Bacillus cereus. J Clin Pathol. 1976; 29(10):938–940; DOI: 10.1136/jcp.29.10.938.

326.Méric G., Mageiros L., et al. Lineage-specific plasmid acquisition and the evolution of specialized pathogens in Bacillus thuringiensis and the Bacillus cereus group. Mol Ecol. 2018; 27(7):1524–1540; DOI: 10.1111/mec.14546.

327.Meselson M., Guillemin J., et al. The Sverdlovsk anthrax outbreak of 1979. Science. 1994; 266(5188):1202–128; DOI: 10.1126/science.7973702.

328.Mesnage S., Tosi-Couture E., et al. The capsule and S-layer: two independent and yet compatible macromolecular structures in Bacillus anthracis. J Bacteriol. 1998; 180(1):52–58; DOI: 10.1128/jb.180.1.52–58.1998.

329.Mignot T., Mesnage S. et al. Developmental switch of S-layer protein synthesis in Bacillus anthracis. Mol Microbiol. 2002; 43(6):1615–1627; DOI: 10.1046/j.1365– 2958.2002.02852.x.

330.Mignot T., Mock M., et al. The incompatibility between the PlcRand AtxA-controlled regulons may have selected a nonsense mutation in Bacillus anthracis. Mol Microbiol. 2001; 42(5):1189–1198; DOI: 10.1046/j.1365–2958.2001.02692.x.

331.Mikesell P., Ivins B. E., et al. Evidence for plasmid-mediated toxin production in Bacillus anthracis. Infect Immun. 1983; 39(1):371–376; DOI: 10.1128/iai.39.1.371–376.1983.

451

332.Milase R. N., Lin J., et al. Reclassification of the first Bacillus tropicus phage calls for reclassification of other Bacillus temperate phages previously designated as plasmids. BMC Genomics. 2024; 25:1018; DOI: 10.1186/s12864–024–10937–4.

333.Miller J. M., Hair J. G., et al. Fulminating bacteremia and pneumonia due to Bacillus cereus. J Clin Microbiol. 1997; 35(2):504–507; DOI: 10.1128/jcm.35.2.504–507.1997.

334.Mishra P. C., Mishra S., et al. Coinoculation of Bacillus thuringeinsis-KR1 with Rhizobium leguminosarum enhances plant growth and nodulation of pea (Pisum sativum L.) and lentil (Lens culinaris L.). World J Microbiol Biotechnol. 2009; 25:753–761; DOI: 10.1007/s11274–009–9963-z.

335.Missiakas D., Schneewind O. Assembly and Function of the Bacillus anthracis S-Layer. Annu Rev Microbiol. 2017; 71:79–98; DOI: 10.1146/annurev-micro-090816–093512.

336.Moayeri M., Leppla S. H., et al. Anthrax Pathogenesis. Annu Rev Microbiol. 2015; 69:185–208; DOI: 10.1146/annurev-micro-091014–104523.

337.Moctezuma K., Acevedo H. D., et al. Enterotoxemia in a 2-day-old lamb produced by a Clostridium perfringens type D lambda toxin-positive strain. J Vet Diagn Invest. 2025; 27:10406387251320943; DOI: 10.1177/10406387251320943.

338.Moorhead R. William Budd and typhoid fever. JRSM. 2002; 95(11):561–564; DOI: 10.1258/jrsm.95.11.561

339.Morens D. M. Characterizing a “new” disease: Epizootic and epidemic Anthrax, 1769–1780. Am J Public Health. 2003; 93(6):886–893; DOI: 10.2105/ajph.93.6.886

340.Morens D. M. Epidemic Anthrax in the Eighteenth Century, the Americas. Emerg Infect Dis. 2002; 8(10):1160–1162; DOI: 10.3201/eid0810.020173

341.Mortimer P. R., McCann G. Food-poisoning episodes associated with Bacillus cereus in fried rice. Lancet. 1974; 1(7865):1043–1045; DOI: 10.1016/s0140–6736(74)90434–6.

342.Mosser E. M., Rest R. F. The Bacillus anthracis cholesterol-dependent cytolysin, Anthrolysin O, kills human neutrophils, monocytes and macrophages. BMC Microbiol. 2006; 6:56; DOI: 10.1186/1471–2180–6–56.

343.Mursalin M. H., Livingston E. T., et al. The cereus matter of Bacillus endophthalmitis. Exp Eye Res. 2020; 193:107959; DOI: 10.1016/j.exer.2020.107959.

344.Naclerio G., Ricca E., et al. Antimicrobial activity of a newly identified bacteriocin of Bacillus cereus. Appl Environ Microbiol. 1993; 59(12):4313–4316; DOI: 10.1128/aem.59.12.4313–4316.1993.

345.Nakamura L. K. Bacillus pseudomycoides sp. nov. Int J Syst Bacteriol. 1998; 48(3):1031–5; DOI: 10.1099/00207713–48–3–10.

346.Narsana N., Farhat F. Septic shock due to Pasteurella multocida bacteremia: a case report. J Med Case Rep. 2015; 9:159; DOI: 10.1186/s13256–015–0643–3.

347.Negus D., Burton J., et al. Poly-γ-(D)-glutamic acid capsule interferes with lytic infection of Bacillus anthracis by B. anthracis-specific bacteriophages. Appl Environ Microbiol. 2013; 79(2):714–717; DOI: 10.1128/AEM.02682–12.

348.Norris M. H., Bluhm A. P., et al. Beyond the spore, the exosporium sugar anthrose impacts vegetative Bacillus anthracis gene regulation in cis and trans. Sci Rep. 2023; 13:5060; DOI: 10.1038/s41598–023–32162-x.

349.Norris M. H., Kirpich A., et al. Convergent evolution of diverse Bacillus anthracis outbreak strains toward altered surface oligosaccharides that modulate anthrax pathogenesis. PLoS Biol. 2020; 18(12):e3001052; DOI: 10.1371/journal.pbio.3001052.

452

350.Norris M. H., Zincke D., et al. Genomic and phylogenetic analysis of Bacillus cereus biovar anthracis isolated from archival bone samples reveals earlier natural history of the pathogen. Pathogens 2023; 12(8):1065; DOI: 10.3390/pathogens12081065.

351.O’Brien D. K., Ribot W. J., et al. The capsule of Bacillus anthracis protects it from the bactericidal activity of human defensins and other cationic antimicrobial peptides. PLoS Pathog. 2022; 18(9):e1010851; DOI: 10.1371/journal.ppat.1010851.

352.Oh S. Y., Chateau A., et al. Modeling gastrointestinal anthrax disease. Res Microbiol. 2023; 174(6):104026; DOI: 10.1016/j.resmic.2023.104026.

353.Oh S.-Y., Budzik J. M., et al. Two capsular polysaccharides enable Bacillus cereus G9241 to cause anthrax-like disease. Mol Microbiol. 2011; 80(2):455–470; DOI: 10.1111/j.1365– 2958.2011.07582.x.

354.Okinaka R. T., Cloud K., et al. Sequence and organization of pXO1, the large Bacillus anthracis plasmid harboring the anthrax toxin genes. J Bacteriol. 1999; 181(20):6509–6515; DOI: 10.1128/jb.181.20.6509–6515.1999.

355.Okinaka R. T., Henrie M., et al. Single nucleotide polymorphism typing of Bacillus anthracis from Sverdlovsk tissue. Emerg Infect Dis. 2008; 14(4):653–656; DOI: 10.3201/eid1404.070984.

356.Økstad O. A., Hegna I., et al. Genome organization is not conserved between Bacillus cereus and Bacillus subtilis. Microbiology (Reading). 1999; 145 (Pt 3):621–631; DOI: 10.1099/13500872–145–3–621.

357.Okutani A., Tungalag H., et al. Molecular epidemiological study of Bacillus anthracis isolated in Mongolia by multiple-locus variable-number tandem-repeat analysis for 8 loci (MLVA-8). Jpn J Infect Dis. 2011; 64(4):345–348.

358.Olani A., Galante D., et al. Identification of Bacillus anthracis strains from animal cases in Ethiopia and genetic characterization by whole-genome sequencing. Pathogens. 2025; 14(1):39; DOI: 10.3390/pathogens14010039.

359.Olsufev N. G., Leler P. P. On the importance of tabanids in the spread of anthrax, in Parasites Transmitteurs anim. venimaux. Rec. Trav. 25th Anniv. Sci. Pavlovsky 1909–1934 (Applied Entomology, 1936; 24:177–179).

360.Orozova P., Sikarov I., et al. Recovery of Bacillus mycoides, B. pseudomycoides and Aeromonas hydrophila from common carp (Cyprinus carpio) and rainbow trout (Oncorhynchus mykiss) with gill disease. J Fish Dis. 2018; 41(1):125–129; DOI: 10.1111/jfd.12686.

361.Ouchterlony Ö. Antigen – antibody reactions in gel. Acta Pathol Microbiol Scand. 1949; 26(4):507–515; DOI: 10.1111/j.1699–0463.1949.tb00751.x.

362.Ozdemir H., Demirdag K., et al. Anthrax of the gastrointestinal tract and oropharyx: CT findings. Emerg Radiol. 2010; 17:161–164; DOI: 10.1007/s10140–009–0821-y.

363.Pannucci J., Okinaka R. T., et al. Bacillus anthracis pXO1 plasmid sequence conservation among closely related bacterial species. J Bacteriol. 2002; 184(1):134–141; DOI: 10.1128/JB.184.1.134–141.2002.

364.Pannucci J., Okinaka R. T., et al. DNA sequence conservation between the Bacillus anthracis pXO2 plasmid and genomic sequence from closely related bacteria. BMC Genomics. 2002; 3:34; DOI: 10.1186/1471–2164–3–34.

365.Paolino K. M., Regules J. A., er al. Safety and immunogenicity of a plant-derived recombinant protective antigen (rPA)-based vaccine against Bacillus anthracis: A Phase 1 dose-

453

escalation study in healthy adults. Vaccine. 2022; 40(12):1864–1871; DOI: 10.1016/j.vaccine.2022.01.047.

366.Park H., Lee C. S., et al. Bacillus cereus endophthalmitis in a child with hemophilia: a case report. Korean J Ophthalmol. 2024; 38(4):327–329; DOI: 10.3341/kjo.2024.0058.

367.Park S., Jun S. Y., et al. Characterisation of the antibacterial properties of the recombinant phage endolysins AP50–31 and LysB4 as potent bactericidal agents against Bacillus anthracis. Sci Rep. 2018; 8(1):18; DOI: 10.1038/s41598–017–18535-z.

368.Pasteur L., Chamberland C., Roux E. Compte rendu sommaire des expériences faites à Pouilly-le-Fort, près Melun, sur la vaccination charbonneuse. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences; 1881; XCII:1378–1383.

369.Paul G. K., Mahmud S., et al. Volatile compounds of Bacillus pseudomycoides induce growth and drought tolerance in wheat (Triticum aestivum L.). Sci Rep. 2022; 12(1):19137; DOI: 10.1038/s41598–022–22354–2.

370.Petosa C., Collier R. J., et al. Crystal structure of the anthrax toxin protective antigen. Nature. 1997; 385:833–838; DOI: 10.1038/385833a0.

371.Pilo P., Rossano A., et al. Bovine Bacillus anthracis in Cameroon. Appl Environ Microbiol. 2011; 77(16):5818–5821. DOI: 10.1128/AEM.00074–11.

372.Pisarenko S. V., Eremenko E. I., et al. Molecular genotyping of 15 B. anthracis strains isolated in Eastern Siberia and Far East. Mol Phylogenet Evol. 2021; 159:107116; DOI: 10.1016/j.ympev.2021.107116.

373.Pisarenko S. V., Eremenko E. I., et al. Phylogenetic analysis of Bacillus anthracis strains from Western Siberia reveals a new genetic cluster in the global population of the species. BMC Genomics. 2019; 20:692; DOI: 10.1186/s12864–019–6060-z.

374.Plaut R. D., Beaber J. W., et al. Genetic evidence for the Involvement of the S-layer protein gene sap and the sporulation genes spo0A, spo0B, and spo0F in phage AP50c infection of Bacillus anthracis. J Bacteriol. 2014; 196(6):1143–1154; DOI: 10.1128/JB.00739–13.

375.Pollender A. Mikroskopische und mikrochemische Untersuchung des Milzbrandblutes, so wie über Wesen und Kur des Milzbrandes. Vierteljahrsschrift für gerichtliche und öffentliche Medicin. 1855; 8:103–114.

376.Popescu C. P., Zaharia M., et al. Anthrax meningoencephalitis complicated with brain abscess – A case report. Int J Infect Dis. 2021; 108:217–219; DOI: 10.1016/j.ijid.2021.05.013.

377.Popova T. G., Espina V., et al. Whole proteome analysis of mouse lymph nodes in cutaneous anthrax. PLoS One. 2014; 9(10):e110873; DOI: 10.1371/journal.pone.0110873.

378.Popova T. G., Millis B., et al. Anthrolysin O and fermentation products mediate the toxicity of Bacillus anthracis to lung epithelial cells under microaerobic conditions. FEMS Immunol Med Microbiol. 2010; 61(1):15–27; DOI: 10.1111/j.1574–695X.2010.00740.x.

379.Powell A. G. M. T., Crozier J. E. M., et al. A case of septicaemic anthrax in an intravenous drug user. BMC Infect Dis. 2011; 11:21; DOI: 10.1186/1471–2334–1121.

380.Price E. P., Seymour M. L., et al. Molecular Epidemiologic Investigation of an Anthrax Outbreak among Heroin Users, Europe. Emerg Infect Dis. 2012; 18(8):1307–1313; DOI: 10.3201/eid1808.111343.

381.Priest F. G., Barker M., et al. Population structure and evolution of the Bacillus cereus group. J Bacteriol. 2004; 186(23):7959–7970; DOI: 10.1128/JB.186.23.7959–7970.2004.

454

382.Rajesh A., Hariny V. S., et al. Performance of Bacillus tropicus on mechanical, durable and crack remediation properties in sustainable vermiculite concrete. J Bionic Eng. 2024; 21:1987–1999; DOI: 10.1007/s42235–024–00546-y.

383.Rampersad J., Khan A., et al. Usefulness of staining parasporal bodies when screening for Bacillus thuringiensis. J Invert Pathol. 2002; 79(3):203–204; DOI: 10.1016/s0022– 2011(02)00018–6.

384.Rasko D. A., Worsham P. L., et al. Bacillus anthracis comparative genome analysis in support of the Amerithrax investigation. PNAS. 2011; 108(12):5027–5032; DOI: 10.1073/pnas.1016657108.

385.Rayer M. Inoculation du sang de rate. Comptes rendus des séances et mémoires de la Société de Biologie. 1850; 2:141–144.

386.Read T. D., Salzberg S. L., et al. Comparative genome sequencing for discovery of novel polymorphisms in Bacillus anthracis. Science. 2002; 296(5575):2028–2033; DOI: 10.1126/science.1071837.

387.Ren J., Wang C., et al. Biodegradation of acephate by Bacillus paramycoides NDZ and its degradation pathway. World J Microbiol Biotechnol. 2020; 36:155; DOI: 10.1007/s11274–020–02931–1.

388.Review of the Scientific Approaches Used During the FBI's Investigation of the 2001 Anthrax Letters, National Academies Press, 2011, 210 p.; DOI: 10.17226/13098.

389.Riedel S. Anthrax: a continuing concern in the era of bioterrorism. Proc (Bayl Univ Med Cent). 2005; 18(3):234–243; DOI: 10.1080/08998280.2005.11928074.

390.Ringertz S. H., Høiby E. A., et al. Injectional anthrax in a heroin skin-popper. Lancet. 2000; 356(9241):1574–1575; DOI: 10.1016/s0140–6736(00)03133–0.

391.Robillard N. J., Koehler T. M., et al. Plasmid pBAI-mediated toxin production in Bacillus anthracis cells. Abstr. Annu Meet Amer Soc Microbiol. 1983; H54:115.

392.Rocha F. Y. O., Júnior A. S. N., et al. Endophytic Bacillus bacteria living in sugarcane plant tissues and Telchin licus licus Larvae (Drury) (Lepidoptera: Castniidae): the symbiosis that may open new paths in the biological control. Front Microbiol. 2021; 12:659965; DOI: 10.3389/fmicb.2021.659965.

393.Romanenko M. N., Shikov A. E., et al. Genomic insights into the bactericidal and fungicidal potential of Bacillus mycoides b12.3 isolated in the Soil of Olkhon Island in Lake Baikal, Russia. Microorganisms 2024; 12(12):2450; DOI: 10.3390/microorganisms12122450.

394.Roonie, A., Majumder S., et al. Molecular characterization of B. anthracis isolates from the anthrax outbreak among cattle in Karnataka, India. BMC Microbiol. 2020; 20:232; DOI: 10.1186/s12866–020–01917–1.

395.Rose L., Jensen B., et al. Swab materials and Bacillus anthracis spore recovery from nonporous surfaces. Emerg Infect Dis. 2004; 10(6):1023–1029; DOI: 10.3201/eid1006.030716.

396.Rousset L., Alpha-Bazin B., et al. Groundwater promotes emergence of asporogenic mutants of emetic Bacillus cereus. Environ Microbiol. 2020; 22(12):5248–5264; DOI: 10.1111/1462–2920.15203.

397.Rudd S. R., Miranda L.S., et al. The parasporal body of Bacillus thuringiensis subsp. israelensis: a unique phage capsid-associated prokaryotic insecticidal organelle. Biology (Basel). 2023; 12(11):1421; DOI: 10.3390/biology12111421.

455

398.Russell L., Pedersen M., et al. Two anthrax cases with soft tissue infection, severe oedema and sepsis in Danish heroin users. BMC Infect Dis. 2013; 13:408; DOI: 10.1186/1471– 2334–13–408.

399.Saile E., Koehler T. M. Bacillus anthracis multiplication, persistence, and genetic exchange in the rhizosphere of grass plants. Appl Environ Microbiol. 2006; 72(5):3168–3174; DOI: 10.1128/AEM.72.5.3168–3174.2006.

400.Samanta S., Datta D., et al. Biodegradation efficacy of soil inherent novel sp. Bacillus tropicus (MK318648) onto low density polyethylene matrix. J Polym Res. 2020; 27:324; DOI: 10.1007/s10965–020–02296-x.

401.Sastry K. S. R., Tuteja U., et al. Identification of Bacillus anthracis by a simple protective antigen-specific mAb dot-ELISA. J Med Microbiol. 2003; 52(Pt 1):47–49; DOI: 10.1099/jmm.0.05027–0.

402.Sato K., Ichiyama S., et al. A case of urinary tract infection caused by Bacillus cereus. J Infect. 1998; 36(2):247–248; DOI: 10.1016/s0163–4453(98)80032–7.

403.Schamber G. J., Berg I. E., et al. Braxy or Bradsot-like abomastitis caused by Clostridium septicum in a calf. Can Vet J. 1986; 27(4):194.

404.Schuberg A., Kuhn M. Ueber die Uebertragung von Krankheiten durch einheimishsche stechende insekten. ArB. a. d. kais. Gesundheitsamt. 1912; 40(2):209–234.

405.Sclavo A. Sulla preparazione del siero anticarbonchioso (memoria 2.). Roma: Tipog. delle Mantellate, 1895, 5 p.

406.Selim K. A., Rostom M. Bioflocculation of (Iron oxide – Silica) system using Bacillus cereus bacteria isolated from Egyptian iron ore surface. Egyptian Journal of Petroleum. 2018; 27(2):235–240; DOI: 10.1016/j.ejpe.2017.07.002.

407.Sen S. K., Minett F. C. Experiments on the transmission of anthrax through flies. Ind J Vet Sci. 1944; 14:149–159.

408.Setlow P. Germination of spores of Bacillus species: what we know and do not know. J Bacteriol. 2014; 196(7):1297–1305; DOI: 10.1128/JB.01455–13.

409.Shahcheraghi S. H., Ayatollahi J. pXO1-and pXO2-like Plasmids in Bacillus cereus and B. thuringiensis. Jundishapur Journal Of Microbiology. 2013; 6(10):e8482.

410.Sharma S., Bhatnagar R., et al. Bacillus anthracis poly-γ-D-glutamate capsule inhibits opsonic phagocytosis by impeding complement activation. Front Immunol. 2020; 11:462; DOI: 10.3389/fimmu.2020.00462.

411.Shatterjee S., Shatterjee S., et al. Mersacidin, a new antibiotic from Bacillus. Fermentation, isolation, purification and chemical characterization. J Antibiot (Tokyo). 1992; 45(6):832– 838; DOI: 10.7164/antibiotics.45.832.

412.Shearer J. D., Henning L., et al. Efficacy of the AV7909 anthrax vaccine candidate in guinea pigs and nonhuman primates following two immunizations two weeks apart. Vaccine. 2021; 39(1):1–5; DOI: 10.1016/j.vaccine.2020.10.095.

413.Shibano Y., Yamagata A., et al. Nucleotide sequence coding for the insecticidal fragment of the Bacillus thuringiensis crystal protein. Gene. 1985; 34(2–3):243–251; DOI: 10.1016/0378–1119(85)90133–7.

414.Shlyakhov E. N., Rubinstein E. Human live anthrax vaccine in the former USSR. Vaccine. 1994; 12(8):727–730; DOI: 10.1016/0264–410X(94)90223–2.

415.Sirisanthana T., Brown A. E. Anthrax of the gastrointestinal tract. Emerg Infect Dis. 2002; 8(7):649–651; DOI: 10.3201/eid0807.020062.

456

416.Sirisanthana T., Navachareon N., et al. Outbreak of oral-pharyngeal anthrax: an unusual manifestation of human infection with Bacillus anthracis. Am J Trop Med Hyg. 1984; 33(1):144–150; DOI: 10.4269/ajtmh.1984.33.144.

417.Sittner A., Bar-David E., et al. Closing the gaps: testing the efficacy of carbapenem and cephalosporin treatments of late-stage Anthrax in rabbits. Pathogens. 2024; 13(11):936; DOI: 10.3390/pathogens13110936.

418.Smith H., Keppie J. et al. The chemical basis of the virulence of Bacillus anthracis. V. The specific toxin produced by B. anthracis in vivo. Br J Exp Pathol. 1955; 36:460–472.

419.Smith H., Keppie J. Observations on Experimental Anthrax: Demonstration of a Specific Lethal Factor produced in vivo by Bacillus anthracis. Nature. 1954; 173:869–870; DOI: 10.1038/173869a0.

420.Smith V., Josefsen M., et al. MogR is a ubiquitous transcriptional repressor affecting motility, biofilm formation and virulence in Bacillus thuringiensis. Front Microbiol. 2020; 11:610650; DOI: 10.3389/fmicb.2020.610650.

421.Song Z., Zhao Q., et al. Draft genome sequence of multidrug-resistant β-lactamase- producing Bacillus cereus S66 isolated from China. J Glob Antimicrob Resist. 2019; 17:23– 24; DOI: 10.1016/j.jgar.2019.02.019.

422.Soufiane B., Baizet M., et al. Multilocus sequence analysis of Bacillus thuringiensis serovars navarrensis, bolivia and vazensis and Bacillus weihenstephanensis reveals a common phylogeny. Antonie Van Leeuwenhoek. 2013; 103(1):195–205; DOI: 10.1007/s10482– 012–9800–5.

423.Soufiane B., Côté J.-C. Bacillus weihenstephanensis characteristics are present in Bacillus cereus and Bacillus mycoides strains. FEMS Microbiol Lett. 2013; 341(2):127–137; DOI: 10.1111/1574–6968.12106.

424.Soufiane B., Sirois M., et al. Mutually exclusive distribution of the sap and eag S-layer genes and the lytB/lytA cell wall hydrolase genes in Bacillus thuringiensis. Antonie Van Leeuwenhoek. 2011; 100(3):349–364.; DOI: 10.1007/s10482–011–9590–1.

425.Splino M., Patocka J., et al. Anthrax vaccines. Ann Saudi Med. 2005; 25(2):143–149; DOI: 10.5144/0256–4947.2005.143.

426.Sprenkle M. D., Griffith J., et al. Lethal factor and anti-protective antigen IgG levels associated with inhalation anthrax, Minnesota, USA. Emerg Infect Dis. 2014; 20(2):310–314; DOI: 10.3201/eid2002.130245.

427.Stamatin N. Stamatin L. Le pouvoir immunisant de souches acapsulogènes du B. anthracis. C R Soc Biol. 1936; 122:491–493.

428.Stark J. F. The making of modern Anthrax, 1875–1920: Uniting Local, National, and Global Histories of Disease. Science and Culture in the Nineteenth Century, no. 21. London: Pickering & Chatto, 2013. xi + 251 pp.

429.Sternbach G. The history of anthrax. J Emerg Med. 2003; 24(4):463–467; DOI: 10.1016/S0736–4679(03)00079–9.

430.Sterne M. The use of anthrax vaccines prepared from avirulent (uncapsulated) variants of Bacillus anthracis. Onderstepoort J Vet Sci Anim Ind. 1939; 13:307–312.

431.Stevens D. L., Musher D. M., et al. Spontaneous, nontraumatic gangrene due to Clostridium septicum. Rev Infect Dis. 1990; 12(2):286–296; DOI: 10.1093/clinids/12.2.286.

457

432.Stewart G. G. The exosporium layer of bacterial spores: a connection to the environment and the infected host. Microbiol Mol Biol Rev. 2015; 79(4):437–457; DOI: 10.1128/MMBR.00050–15.

433.Stratford J. P., Woodley M. A., et al. Variation in the morphology of Bacillus mycoides due to applied force and substrate structure. PLoS One. 2013; 8(12):e81549; DOI: 10.1371/journal.pone.0081549.

434.Suffin S. C., Carnes W. H., et al. Inhalation anthrax in a home craftsman. Hum Pathol. 1978; 9(5):594–597; DOI: 10.1016/s0046–8177(78)80140–3.

435.Sweeney D. A., Hicks C. W., et al. Anthrax infection. Am J Respir Crit Care Med. 2011; 184(12):1333–1341; DOI: 10.1164/rccm.201102–0209CI.

436.Swiecicka I. Natural occurrence of Bacillus thuringiensis and Bacillus cereus in eukaryotic organisms: a case for symbiosis. Biocontrol Science and Technology. 2008; 18(3):121–239; DOI: 10.1080/09583150801942334.

437.Swiecicka I., Mahillon J. Diversity of commensal Bacillus cereus sensu lato isolated from the common sow bug (Porcellio scaber, Isopoda). FEMS Microbiol Ecol. 2006; 56(1):132–140; DOI: 10.1111/j.1574–6941.2006.00063.x.

438.Symposium in Memoriam Dr. Ernst Berliner anläßlich des 75. Jahrestages der

Erstbeschreibung von Bacillus thuringiensis : Darmstadt, 25. Aug. 1986 bearbeitet von Dr.

A.Krieg und Dr. A. M. Huger, Mitteilungen aus der Biologischen Bundesanstalt für

Landund Forstwirtschaft, Berlin-Dahlem. 1986; 233, 111 p.; DOI: 10.5073/20210628– 103818.

439.Tamura Y., Kijima M., et al. Partial characterization of the hemolysin produced by Clostridium chauvoei. J Vet Med Sci. 1992; 54(4):777–778; DOI: 10.1292/jvms.54.777.

440.Tan A.-P., Zhao F., et al. Isolation and Identification of Bacillus cereus from Trionyx sinensis. Guangdong Agric Sci. 2011; 20:115–119.

441.Tao Z., Xu J., et al. Infectious diseases of the Chinese soft-shelled turtle (Pelodiscus sinensis):

Afocus on etiological agents and predisposing factors. Aquaculture Reports. 2024; 37:102227; DOI: 10.1016/j.aqrep.2024.102227.

442.Taylor-Joyce G., Manoharan S., et al. The influence of extrachromosomal elements in the anthrax “cross-over” strain Bacillus cereus G9241. Front Microbiol. 2023; 14:1113642; DOI: 10.3389/fmicb.2023.1113642.

443.Teleke Kaymaz S., Cetin F. T., et al. A rare presentation of Anthrax: a pediatric patient with palpebral Anthrax. Med Bull Sisli Etfal Hosp. 2024; 58(1):127–130; DOI: 10.14744/SEMB.2023.51261.

444.Tettelin H., Riley D., et al. Comparative genomics: the bacterial pan-genome. Curr Opin Microbiol. 2008; 11(5):472–277; DOI: 10.1016/j.mib.2008.09.006.

445.Thierry S., Tourterel C., et al. Genotyping of French Bacillus anthracis strains based on 31loci multi locus VNTR Analysis: epidemiology, marker evaluation, and update of the internet genotype database. PLoS One. 2014; 9(6):e95131; DOI: 10.1371/journal.pone.0095131.

446.Thomassin J.-F. Dissertation sur la charbon malin de la Bourgogne, ou la pustule maligne.

Dijon: Antoine Benoit; 1780.

447.Thompson B. M., Waller L. N., et al. The BclB Glycoprotein of Bacillus anthracis is involved in exosporium integrity. J Bacteriol. 2007; 189(18):6704–6713; DOI: 10.1128/JB.00762–07.

448.Thorne C. B. Biochemical properties of virulent and avirulent strains of Bacillus anthracis. Ann NY Acad Sci. 1960; 88:1024–1033; DOI: 10.1111/j.1749–6632.1960.tb20094.x.

458

449.Thwaite J. E., Hibbs S., et al. Proteolytic degradation of human antimicrobial peptide LL-37 by Bacillus anthracis may contribute to virulence. Antimicrob Agents Chemother. 2006; 50(7):2316–2322; DOI: 10.1128/AAC.01488–05.

450.Timofeev V., Bahtejeva I., et al. Insights from Bacillus anthracis strains isolated from permafrost in the tundra zone of Russia. PLoS One. 2019; 14(5):e0209140; DOI: 10.1371/journal.pone.0209140.

451.Timofeev V., Bakhteeva I., et al. New research on the Bacillus anthracis genetic diversity in Siberia. Pathogens. 2023; 12(10):1257; DOI: 10.3390/pathogens12101257.

452.Tonello F., Zornetta I., et al. Bacillus anthracis factors for phagosomal escape. Toxins (Basel). 2012; 4(7):536–553; DOI: 10.3390/toxins4070536.

453.Tournier J.-N., Rougeaux C. Anthrax toxin detection: from in vivo studies to diagnostic applications. Microorganisms. 2020; 8(8):1103; DOI: 10.3390/microorganisms8081103.

454.Tsai J.-M., Kuo H.-W., et al. Retrospective Screening of Anthrax-like Disease Induced by Bacillus tropicus str. JMT from Chinese Soft-Shell Turtles in Taiwan. Pathogens. 2023; 12(5):693; DOI: 10.3390/pathogens12050693.

455.Turell M. J., Knudson G. B. Mechanical transmission of Bacillus anthracis by stable flies (Stomoxys calcitrans) and mosquitoes (Aedes aegupti and Aedes taeniorhynchus). Infection and Immunology. 1987; 55:1859–1861.

456.Turnbull P. C., Jørgensen K., et al. Severe clinical conditions associated with Bacillus cereus and the apparent involvement of exotoxins. J Clin Pathol. 1979; 32(3):289–293; DOI: 10.1136/jcp.32.3.289.

457.Turner W. C., Imologhome P., et al. Soil ingestion, nutrition and the seasonality of anthrax in herbivores of Etosha National Park. Ecosphere. 2013; 4(1):1–19; DOI: 10.1890/ES12–00245.1.

458.Uchid I., Hashimoto K., et al. Virulence and immunogenicity in experimental animals of Bacillus anthracis strains harbouring or lacking 110 MDa and 60 MDa plasmids. J Gen Microbiol. 1986; 132:557–559.

459.Uchid I., Sekizaki T., et al. Association of the encapsulation of Bacillus anthracis with a 60 megadalton plasmid. J Gen Microbiol. 1985; 131:363–367.

460.Uchida I., Makino S., et al. Identification of a novel gene, dep, associated with depolymerization of the capsular polymer in Bacillus anthracis. Mol Microbiol. 1993; 9(3):487–496; DOI: 10.1111/j.1365–2958.1993.tb01710.x.

461.Ullah M., Li H., et al. Polyvinyl alcohol degradation by Bacillus cereus RA23 from oil sludge sample. 3 Biotech. 2019; 9(10):350; DOI: 10.1007/s13205–019–1882–6.

462.Van der Zwet W. C., Parlevliet G. A., et al. Outbreak of Bacillus cereus infections in a Neonatal Intensive Care Unit traced to balloons ssed in manual ventilation. J Clin Microbiol. 2000; 38(11):4131–4136; DOI: 10.1128/jcm.38.11.4131–4136.2000.

463.Van Ert M. N., Easterday W. R., et al. Global genetic population structure of Bacillus anthracis. PLoS One. 2007; 2(5):e461; DOI: 10.1371/journal.pone.0000461.

464.Walsh J. J., Pesik N., et al. A case of naturally acquired inhalation anthrax: clinical care and analyses of anti-protective antigen immunoglobulin G and lethal factor. Clin Infect Dis. 2007; 44(7):968–971; DOI: 10.1086/512372.

465.Wang D., Yu H., et al. The complete genome sequence of Bacillus toyonensis Cbmb3 with polyvinyl chloride-degrading properties. J Xenobiot. 2024; 14(1):295–307; DOI: 10.3390/jox14010018.

459