Билеты гиста
.pdfфибробласты), призматическую (кишечный эпителиоцит), уплощенную (эндотелиоцит, мезотелиоцит) и др.
3. Размножение клеток путем деления исходной клетки. Т. Шванн в своих обобщениях подчеркивал одинаковость принципа развития клеток как у животных, так и у растений. Сформулированное позднее Р. Вирховым положение «всякая клетка от клетки» можно считать биологическим законом.
Размножение клеток, прокариотических и эукариотичес-ких, происходит только путем деления исходной клетки, которому предшествует воспроизведение ее генетического материала (репродукция ДНК).
4. Клетки как части целостного организма. Каждое проявление деятельности целого организма, будь то реакция на раздражение или движение, иммунные реакции и многое другое, осуществляется специализированными клетками.
Многоклеточные организмы представляют собой сложные ансамбли специализированных клеток, объединенных в целостные, интегрированные системы тканей и органов, подчиненные и связанные межклеточными, гуморальными и нервными формами регуляции.
Реснички и жгутикивстречаются у одноклеточных организмов (бактерии, простейшие) и у клеток в составе тканей (клетки эпителия трахеи). Они связаны с элементами движения, которые характерны определенным видам клеток.
Миофибриллыимеются в мышечных клетках и обеспечивают сокращение мыщц.
Нейрофибриллы- являются обязательным компонентом многих нервных клеток и их отростков. Участвуют в передаче возбуждения.
Включения - непостоянные компоненты клетки, возникающие в результате внутриклеточного метаболизма или других процессов жизнедеятельности клетки.
В функциональном отношении все включения подразделяются на три группы: трофические, секреторные и специальные,
Трофические включенияотражают повседневный метаболизм клетки. Они представлены гранулами гликогена, белковыми зернами, каплями жира.
Секреторные включенияхарактерны, в основном, для железистых клеток.
Специальные включения присутствуют в высокоспециализированных клетках. К этой группе относят гранулы пигмента меланина, плотно заполняющего цитоплазму меланоцитов - особых клеток с защитной функцией.
Рибосомы(безмембранные) -это ультрамикроскопические сферические гранулы, состоящие из двух половинок - большой и малой субъединиц, а также рибосомальной РНК. Главное назначение их - участие в синтезе белка.
Митохондрии (двухмембранные). Митохондрии имеют наружную и внутреннюю мембрану
Наружная мембрана напоминает сито, проницаемое для небольших белков. Внутренняя мембрана образует многочисленные складки - кристы, в виде гребней, вдающихся во внутреннюю полость, называемую матрикс. Промежуток между наружной и внутренней мембраной называют межмембранным пространством. На кристах содержатся дыхательные ферменты, необходимые для окислительного фосфорилирования. Результатом его является образование АТФ и выделение большого количества энергии, необходимой для жизнедеятельности клеток. Митохондрии содержат цитоплазматическую ДНК, отличную от ДНК ядра.
Комплекс Гольджи (одномембранный). По данным электронной микроскопии он состоит из диктиосом. Каждая диктиосома представляет стопку плоских мешочков-цистерн (рис. 6). Число цистерн в одной диктиосоме 5 - 7. От краев цистерн отделяются микропузырьки. Основная функция комплекса Гольджи заключается в накоплении и конденсации продуктов синтезируемых эндоплазматическим ретикулумом и в образовании лизосом.
Лизосомы (одномембранный). Лизосомы представляют сферические частицы размерами 0,5 - 2,0 мкм. Они имеют плотную липопротеиновую мембрану. Содержат большой набор гидролитических ферментов. Они необходимы для процессов внутриклеточного пищеварения. Другой важной функцией лизосом является автолиз - посмертное растворение структурных компонентов клетки под действием ферментов лизосом.
Центросома. Типичная центросома представлена двумя центриолями. Центросома обеспечивает процесс митоза, формируя митотический аппарат клетки.
ЭПС (одномембранный) – совокупность мембранных вокуолей, трубочек и цистерн. Выделяют 2 типа ЭПС:
1)Гладкая (агранулярная) – синтезирует липиды, обезвреживает токсические вещества.
2)Шероховатая (гранулярная) – синтезирует белки, осуществляется выводом из клетки.
3.Основы иммунитета
Иммунитет представляет собой систему специфических и неспецифических защитных механизмов, с помощью которых организм распознает и уничтожает все генетически чужеродное. Эти механизмы поддерживают структурную и функциональную целостность организма. Основную роль в реализации иммунных реакций играют: Т-лимфоциты, В-лимфоциты, лимфоциты, обладающие естественными цитотоксическими свойствами
(натуральные киллеры, нулевые клетки, Рit-клетки), макрофаги и другие антигенпредставляющие клетки. В
зависимости от участия клеточных популяций в иммунных реакциях выделяют клеточный и гуморальный иммунитет.
4. Задача про рубцовую ткань и пулю
22билет
1.Желудок ,строение
Развитие. Желудок появляется на 4-й неделе внутриутробного развития. Однослойный призматический эпителий желудка развивается из энтодермы кишечной трубки. Железы закладываются на дне желудочных ямочек
Строение. В желудке выделяют несколько частей: кардиальная, дно желудка, тело желудка и пилорическая часть.
Для рельефа внутренней поверхности желудка характерно наличие трех видов образований — продольных желудочных складок, желудочных полей и желудочных ямочек. Желудочные складки образованы слизистой оболочкой и подслизистой основой. Желудочные поля представляют собой отграниченные друг от друга бороздками участки слизистой оболочки. Желудочные ямочки — углубления эпителия в собственной пластинке слизистой оболочки.
Слизистая оболочка. Эпителий - однослойный цилиндрический железистый. Все поверхностные эпителиоциты желудка постоянно выделяют мукоидный секрет.
В собственной пластинке слизистой оболочки расположены железы желудка, между которыми лежат тонкие прослойки РВСт. В ней имеются скопления лимфоидных элементов.
Мышечная пластинка слизистой оболочки состоит из трех слоев, образованных гладкой мышечной тканью: внутреннего и наружного циркулярных и среднего — продольного.
Железы желудка: Различают три вида желудочных желез: собственные железы желудка – простые неразветвленные трубчатые, пилорические и кардиальные – простые разветвленные трубчатые.
Главные железы вырабатывают пепсиноген
Париетальные – хлориды
Слизистые – слизь
Эндокринные: EC – сератонин, мелатонин; G - гастрин; ECL - гистамин; D - соматостатин;
Подслизистая основа: состоит из рыхлой волокнистой неоформленной соединительной ткани, содержащей большое количество эластических волокон. В ней расположены артериальное и венозное сплетения, сеть лимфатических сосудов и подслизистое нервное сплетение.
Мышечная оболочка: различают три слоя, образованных гладкими мышечными клетками. Наружный - продольный. Средний — циркулярный. Внутренний - пучки гладких мышечных клеток,
Серозная оболочка образует наружную часть его стенки.
Функции:
4)Секреторная
5)Механическая
6)Всасывающая
7)Экскреторная
2.Синапсы ,классификация
Синaпс – специализированный контакт между нервными клетками (или нервными и другими возбудимыми клетками), обеспечивающий передачу возбуждения с сохранением его информационной значимости. С помощью синапсов нервные клетки объединяются в нервные сети, которые осуществляют обработку информации. Взаимосвязь между нервной системой и периферическими органами и тканями также осуществляется при помощи синапсов.
Классификация синапсов
По морфологическому принципу синапсы подразделяют на:
•нейро-мышечные (аксон нейрона контактирует с мышечной клеткой);
•нейро-секреторные (аксон нейрона контактирует с секреторной клеткой);
•нейро-нейрональные (аксон нейрона контактирует с другим нейроном):
•аксо-соматические (с телом другого нейрона), • аксо-аксональные (с аксоном другого нейрона), • аксо-дендритические (с дендритом другого нейрон).
По способу передачи возбуждения синапсы подразделяют на:
• электрические (возбуждение передается при помощи электрического тока);
•химические (возбуждение передается при помощи химического вещества):
•адренергические (возбуждение передается при помощи норадреналина), • холинергические (возбуждение передается при помощи ацетилхолина), • пептидергические, NO -ергические,
пуринергические и т. п.
По физиологическому эффекту синапсы подразделяют на:
•возбуждающие (деполяризуют постсинаптическую мембрану и вызывают возбуждение постсинаптической клетки);
•тормозные (гиперполяризуют постсинаптическую мембрану и вызывают торможение постсинаптической клетки).
Ультраструктура синапсов
Все синапсы имеют общий план строения (рис. 1).
Конечная часть аксона (синаптическое окончание), подходя к иннервируемой клетке, теряет миелиновую оболочку и образует на конце небольшое утолщение (синаптическую бляшку). Ту часть мембраны аксона, которая контактирует с иннервируемой клеткой, называют пресинаптической мембраной. Синаптическая щель – узкое пространство между пресинаптической мембраной и мембраной иннервируемой клетки, которое является непосредственным продолжением межклеточного пространства. Постсинаптическая мембрана – участок мембраны иннервируемой клетки, контактирующий с пресинаптической мембраной через синаптическую щель.
Рис. 1. Ультраструктура химического и электрического синапса.
Особенности ультраструктуры электрического синапса (см. рис. 1):
• узкая (около 5 нм) синаптическая щель; • наличие поперечных канальцев, соединяющих пресинаптическую и постсинаптическую мембрану.
Особенности ультраструктуры химического синапса (см. рис. 1):
• широкая (20–50 нм) синаптическая щель; • наличие в синаптической бляшке синаптических пузырьков (везикул), заполненных химическим веществом, при помощи которого передается возбуждение; • в постсинаптической мембране имеются многочисленные хемочувствительные каналы (в возбуждающем синапсе – для Nа+ , в тормозном – для Cl – и К +), но отсутствуют потенциалчувствительные каналы.
Рефлекторные дуги. Нервная ткань входит в состав нервной системы, функционирующей по рефлекторному принципу, морфологическим субстратом которого является рефлекторная дуга. Рефлекторная дуга представляет собой цепь нейронов, связанных друг с другом синапсами и обеспечивающих проведение нервного импульса от рецептора чувствительного нейрона до эфферентного окончания в рабочем органе.
Самая простая рефлекторная дуга состоит из двух нейронов — чувствительного и двигательного. В подавляющем большинстве случаев между чувствительными и двигательными нейронами включены вставочные, или ассоциативные, нейроны. У высших животных рефлекторные дуги состоят обычно из многих нейронов и имеют значительно более сложное строение.
3. Плазматическая мембрана
ПЛАЗМОЛЕММА
Плазмолемма (внешняя клеточная мембрана, цитолемма, плазматическая мембрана) занимает в клетке пограничное положение и играет роль полупроницаемого селективного барьера, который, с одной стороны, отделяет цитоплазму от окружающей клетку среды, а с другой обеспечивает ее связь с этой средой.
Функции плазмолеммы определяются ее положением и включают:
1 Распознавание данной клеткой других клеток и прикрепление к ним;
2 Распознавание клеткой межклеточного вещества и прикрепление к его элементам (волокнам,
базальной мембране);
3 Транспорт веществ и частиц в цитоплазму и из нее (посредством ряда механизмов);
4 Взаимодействие с сигнальными молекулами (гормонами, медиаторами, цитокинами и др.) благодаря наличию на ее поверхности специфических рецепторов к ним;
5 Движение клетки (образование псевдо-, фило- и ламеллоподий) - благодаря связи плазмолеммы с сократимыми элементами цитоскелета.
Структура плазмолеммы. Под электронным микроскопом она, как и другие клеточные мембраны, имеет вид трехслойной структуры, представленной двумя электронно-плотными слоями, которые разделены светлым слоем. Ее молекулярное строение описывается жидкостно-мозаичной моделью, согласно которой она состоит из липидного (фосфо-липидного) бислоя, в который погружены и с которым связаны молекулы белков.
Мембранные рецепторы являются преимущественно гликопротеинами, которые расположены на поверхности плазмолеммы клеток и обладают способностью высокоспецифически связываться со своими лигандами. Они выполняют ряд функций:
(1)регулируют проницаемость плазмолеммы, изменяя конформа-цию белков и ионных каналов;
(2)регулируют поступление некоторых молекул в клетку;
(3)действуют как датчики, превращая внеклеточные сигналы во внутриклеточные;
(4)связывают молекулы внеклеточного матрикса с цитоскеле-том; эти рецепторы, называемые
интегринами, играют важную роль в формировании контактов между клетками и клеткой и компонентами межклеточного вещества.
Рецепторы, связанные с каналами, взаимодействуют с сигнальной молекулой (нейромедиатора),
которая временно открывает или закрывает воротный механизм, в результате чего инициируется или блокируется транспорт ионов через канал.
Каталитические рецепторы включают внеклеточную часть (собственно рецептор) и
цитоплазматическую часть, которая функционирует как протеинкиназа (посредством таких рецепторов на клетки воздействуют инсулин и некоторые факторы роста).
Рецепторы, связанные с G-белками - транс мембранные белки, ассоциированные с ионным каналом или ферментом, - состоят из рецептора, взаимодействующего с сигнальной молекулой (первый посредник), и G-белка (гуанозин трифосфат-связывающего регуляторного белка), включающего несколько компонентов), который передает сигнал на связанный с мембраной фермент (аденилат циклазу) или
ионный канал.
4. Задача 37
23билет
1.Строение мочеточника, почечных лоханок, мочевого пузыря
Мочеточник делят на брюшную часть – от почечной лоханки до пограничной линии и тазовую часть, расположенную в малом тазу.
Мочеточник имеет три сужения, где его диаметр уменьшается до 2-3 мм: при переходе лоханки в мочеточник, у пограничной линии и перед впадением в мочевой пузырь.
Стенка мочеточника состоит из трёх слоев.
•Наружный слой – адвентициальная оболочка – состоит из рыхлой соединительной ткани.
•Средний слой – мышечная оболочка – состоит из нескольких слоев гладкой мускулатуры.
xВ брюшной части внутренний слой состоит из продольной, а наружный – из кольцевой (циркулярной) мускулатуры.
xВ тазовой части формируется дополнительный наружный слой продольной мускулатуры.
•Внутренний слой мочеточника – слизистая оболочка.
Стенка мочеточника обладает большой способностью к растяжению (в патологических условиях мочеточник может достигать огромной толщины), поэтому в нормальных условиях моча поступает в мочевой пузырь не непрерывно, а периодически, по мере накопления её в мочеточнике и расширении последнего.
Почечные лоханки и чашечки:
В строении их стенки выделяют три оболочки:
Слизистая оболочка - состоит из трех слоев:
xмногослойный переходный эпителий;
xсобственная пластинка слизистой оболочки (построена из рыхлой соединительной ткани);
xподслизистая основа (построена из рыхлой соединительной ткани).
Мышечная оболочка – состоит из двух тонких слоев гладких мышечных клеток: внутреннего (продольного) и наружного (циркулярного).
Наружная оболочка – адвентициальная, без резких границ переходит в соединительную ткань, окружающую крупные почечные сосуды.
Мочевой пузырь:
Слизистая оболочка мочевого пузыря в зависимости от топографического участка имеет некоторые особенности своего строения. Так в переднем отделе дна пузыря, в участке имеющем форму треугольника, где в мочевой пузырь впадают мочеточники и выходит мочеиспускательный канал, слизистая оболочка лишена складок и состоит из двух слоев – эпителиального (многослойный переходный эпителий) и собственной пластинка слизистой оболочки, в рыхлой соединительной ткани которой располагаются железы, напоминающие железы нижней части мочеточника. Во всех остальных участках мочевого пузыря слизистая оболочка образует множество складок и состоит из трех слоев: эпителиального (многослойный переходный эпителий), собственной пластинки слизистой оболочки и подслизистой основы, построенных из рыхлой соединительной ткани.
Мышечная оболочка имеет три нерезко отграниченных слоя гладких мышечных клеток: внутренний и наружный слои продольного направления и средний слой - циркулярного. В шейке мочевого пузыря циркулярный слой образует мышечный сфинктер.
Наружная оболочка – на верхнезадней и частично боковых поверхностях мочевого пузыря покрыта серозной оболочкой, а в остальных – адвентициальной.
Стенка мочевого пузыря обильно снабжена кровеносными и лимфатическими сосудами и иннервируется как симпатическими, парасимпатическими, так и спинальными (чувствительными) нервами.
2.Специализированные соед. Ткани
Кним относятся ретикулярная, жировая, слизистая и пигментная ткани.
Ретикулярная ткань состоит из ретикулярных клеток и ретикулярных волокон. Эта ткань образует строму всех кроветворных органов (за исключением тимуса) и, помимо опорной функции, выполняет и другие функции: обеспечивает трофику гемопоэтических клеток, влияет на направление их дифференцировки в процессе кроветворения и иммуногенеза, осуществляет фагоцитоз антигенных веществ и представление антигенных детерминант иммунокомпетентным клеткам.
Жировая ткань состоит из скопления жировых клеток и подразделяется на две разновидности: белую и бурую жировую ткани. Белая жировая ткань широко распространена в различных частях тела и во внутренних органах, неодинаково выражена у разных субъектов и на протяжении онтогенеза. Она состоит из скопления типичных жировых клеток адипоцитов. Группы жировых клеток образуют дольки жировой ткани, между которыми проходят тонкие прослойки соединительной ткани, содержащие сосуды и нервы. В жировых клетках активно протекают обменные процессы.
Функции белой жировой ткани:
xдепо энергии (макроэргов);
xдепо воды;
xдепо жирорастворимых витаминов;
xтеплозащита;
xмеханическая защита некоторых органов (глазного яблока и других).
Бурая жировая ткань встречается только у новорожденных детей. Она локализуется только в определенных местах: за грудиной, около лопаток, на шее, вдоль позвоночника. Бурая жировая ткань состоит из скопления бурых адипоцитов. Окислительные процессы в бурых жировых клетках протекают в 20 раз интенсивнее, чем в белых. При этом образующаяся в результате окисления и
фосфорилирования энергия выделяется в виде тепла. Поэтому основная функция бурой жировой ткани заключается в теплообразовании, которое особенно интенсивно протекает при понижении температуры окружающей среды.
Слизистая соединительная ткань встречается только в эмбриональном периоде в провизорных органах, и прежде всего в составе пупочного канатика. Она состоит в основном из межклеточного вещества, в котором локализуются фибробластоподобные клетки, синтезирующие слизь. Аморфное вещество содержит в большом количестве гиалуроновую кислоту, которая связывает большое количество молекул воды
Пигментная соединительная ткань представляет собой участки ткани, в которых содержится скопление меланоцитов: область сосков, мошонки и анального отверстия, сосудистая оболочка глазного яблока, родимые пятна.
3.Ткань в целом, дифферон, стволовые клетки
Впонятие соединительные ткани объединяются неодинаковые по морфологии и выполняемым функциям ткани, но обладающие некоторыми общими свойствами и развивающиеся из единого
источника — мезенхимы.
Структурно-функциональные особенности соединительных тканей:
xвнутреннее расположение в организме;
xпреобладание межклеточного вещества над клетками;
xмногообразие клеточных форм;
xобщий источник происхождения — мезенхима.
Функции соединительных тканей:
xтрофическая (метаболическая);
xопорная;
xзащитная (механическая, неспецифическая и специфическая иммунологическая);
xрепаративная (пластическая).
Классификация соединительных тканей:
xкровь и лимфа;
xсобственно соединительные ткани — волокнистые: рыхлая и плотная (оформленная и неоформленная); специальные: ретикулярная, жировая, слизистая, пигментная;
xскелетные ткани — хрящевые: гиалиновая, эластическая, фиброзно-волокнистая; костные: пластинчатая, ретикуло-фиброзная.
Ключевым моментом развития тканей является их дифференцировка.
В результате, образуются разные стволовые клетки (источник образования высокодифференцированных клеток). Одни из стволовых клеток формально остаются полипотентными: могут развиваться в разные виды клеток. Пример - стволовые клетки крови - источник всех видов клеток крови. Другие стволовые клетки становятся унипотентными - могут развиваться только по одному направлению. Примеры - стволовые сперматогенные клетки и стволовые клетки эпидермиса.
Итак, в процессе эмбриогенеза происходит постепенное ограничение возможных направлений развития клеток. Этот феномен называется коммитированием.
На определённой стадии коммитирование приводит к тому, что у клетки остаётся только один путь развития: такая клетка называется детерминированной. Итак, детерминация - это появление у клетки генетической запрограммированности только на один путь развития. Таким образом, детерминация - более узкое понятие, чем коммитирование: превращение тотипотентных клеток в полипотентные, олигопотентные и, наконец, унипотентные - это всё коммитирование; о детерминации же можно говорить лишь только на самом последнем этапе - при образовании унипотентных клеток. Действительно, полиили олигопотентная клетка - ещё не детерминирована: у неё сохраняются разные варианты развития. Дифференцировка - это последовательное изменение структуры и функции клетки, которое обусловлено генетической программой развития и приводит к образованию высокоспециализированных клеток.
Дифференцировка приводит к образованию дифферонов.
Дифферон - это совокупность клеточных форм (от стволовой клетки до высокодифференцированных), составляющих определённую линию дифференцировки.
4. Нарушение обоняния из-за травмы лицевой части черепа
24билет
1.Придаток яичка, пути семявыведения
Придаток яичка (эпидедимис). В придаток яичка семенная жидкость поступает по выносящим канальцам, образующим головку эпидедимиса. Выносящие канальцы в теле органа сливаясь между собой продолжаются в канал придатка. Выносящие канальцы выстланы переходным эпителием, где кубический железистый эпителий чередуется призматическим мерцательным, поэтому контур просвета этих канальцев в поперечном срезе складчатый или “зубчатый”. Средняя оболочка выносящих канальцев состоит из тонкой прослойки миоцитов, наружная оболочка – из рыхлой соединительной ткани.
Канал придатка выстлан 2-х рядным мерцательным эпителием, потому просвет канала на срезе имеет ровную поверхность; в средней оболочке по сравнению с выносящими канальцами увеличивается количество миоцитов. Функции придатка:
1)секрет органа разбавляет сперму;
2)завершается стадия формирования сперматогенеза (сперматозоиды покрываются гликокаликсом и приобретают отрицательный заряд);
3)резервуарная функция;
4)реабсорбция из спермы избытка жидкости.
2. Иммунитет, антигеннезависимая и антигензависимая дифференцировка, лимфопоэз
Иммунитет представляет собой систему специфических и неспецифических защитных механизмов, с помощью которых организм распознает и уничтожает все генетически чужеродное. Эти механизмы поддерживают структурную и функциональную целостность организма. Основную роль в реализации иммунных реакций играют: Т-лимфоциты, В-лимфоциты, лимфоциты, обладающие естественными цитотоксическими свойствами
(натуральные киллеры, нулевые клетки, Рit-клетки), макрофаги и другие антигенпредставляющие клетки. В
зависимости от участия клеточных популяций в иммунных реакциях выделяют клеточный и гуморальный иммунитет.
Дифференцировка Т-лимфоцитов
Пре-Т-клетки мигрируют из костного мозга через кровь в центральный орган иммунной системы — вилочковую железу (тимус). Еще в период эмбрионального развития в вилочковой железе создается
микроокружение, имеющее значение для дифференцировки Т-лимфоцитов. В формировании микроокружения особая роль отводится ретикулоэпителиальным клеткам этой железы, способным к продукции ряда биологически активных веществ. Мигрирующие в вилочковую железу пре-Т-клетки приобретают способность реагировать на стимулы микроокружения. Пре-Т-клетки в вилочковой железе пролиферируют, трансформируются в Т-лимфоциты, несущие характерные мембранные антигены. Т- лимфоциты генерируют и «поставляют» в кровообращение и в тимусзависимые зоны периферических лимфоидных органов 3 типа лимфоцитов: Тц, Тх и Тс. Мигрирующие из вилочковой железы «девственные» Т-лимфоциты (виргильные Т-лимфоциты) являются короткоживущими. Специфическое взаимодействие с антигеном в периферических лимфоидных органах служит началом процессов их пролиферации и дифференцировки в зрелые и долгоживущие клетки (Т-эффекторные и Т-клетки памяти), составляющие большую часть рециркулирующих Т-лимфоцитов. Из вилочковой железы мигрируют не все клетки. Часть Т-лимфоцитов погибает. Существует мнение, что причиной их гибели служит присоединение антигена к антигенспецифическому рецептору. В вилочковой железе нет чужеродных антигенов, поэтому данный механизм может служить для удаления Т-лимфоцитов, способных реагировать с собственными структурами организма, т.е. выполнять функцию защиты от аутоиммунных реакций. Гибель части лимфоцитов является генетически запрограммированной (апоптоз).
Дифференцировочные антигены Т-клеток. В процессе дифференцировки лимфоцитов на их поверхности появляются специфические мембранные молекулы гликопротеидов. Такие молекулы (антигены) можно обнаружить с помощью специфических моноклональных антител. Получены моноклональные антитела, которые реагируют лишь с одним антигеном клеточной мембраны. С помощью набора моноклональных антител можно идентифицировать субпопуляции лимфоцитов. Имеются наборы антител к дифференцировочным антигенам лимфоцитов человека. Антитела составляют относительно немного групп (или «кластеров»), каждая из которых узнает один-единственный белок клеточной поверхности. Создана номенклатура дифференцировочных антигенов лейкоцитов человека, выявляемых моноклональными антителами. Эта CD-номенклатура (CD — cluster of differentiation — кластер дифференцировки) базируется на группах моноклональных антител, реагирующих с одними и теми же дифференцировочными антигенами. Получены многоклональные антитела к ряду дифференцировочных антигенов Т-лимфоцитов человека. При определении общей популяции Т-клеток могут быть использованы моноклональные антитела специфичностей. Известны дифференцировочные антигены Т-клеток, которые характерны либо для определенных стадий онтогенеза, либо для различающихся по функциональной активности субпопуляций. Кроме дифференцировочных антигенов, известны специфические маркеры Т-лимфоцитов. Различают антигеннезависимую и антигензависимую дифференцировку и специализацию В- и Т-лимфоцитов.
Антигеннезависимая пролиферация и дифференцировка генетически запрограммированы на образование клеток, способных давать специфический тип иммунного ответа при встрече с конкретным антигеном благодаря появлению на плазмолемме лимфоцитов особых «рецепторов». Она совершается в центральных органах иммунитета (тимус, костный мозг) под влиянием специфических факторов, вырабатываемых клетками, формирующими микроокружение. Антигензависимая пролиферация и дифференцировка Т- и В-лимфоцитов происходят при встрече с антигенами в периферических лимфоидных органах, при этом образуются эффекторные клетки и клетки памяти. Образующиеся Т- лимфоциты составляют пул долгоживущих, рециркулирующих лимфоцитов, а В-лимфоциты – короткоживущих клеток
Лимфопоэз у эмбриона и плода происходит транзиторно в различных эмбриональных тканях. Лимфоидные предшественники присутствуют уже в желточном мешке. К 5-6 неделе гестации предшественники B- и T-клеток появляются в печени, где формируются участки B-лимфопоэза. Другие эмбриональные ткани, включая сальник и плаценту, также содержат предшественники В-клеток.
Селезенка становится очагом гемопоэза в третьем триместре беременности и остается местом гемопоэза до момента рождения. У взрослых селезенка функционирует как вторичный лимфоидный орган, в котором располагаются зрелые T- и B-клетки. После рождения костный мозг становится основным местом развития миелоидных клеток и B-лимфоцитов.
