Билеты гиста
.pdfАцинус состоит из последовательных ветвлений респираторной бронхиолы, альвеолярного хода и альвеолярных мешочков. Ацинусы отделяются прослойками соединительной ткани и 12-18 ацинусов составляют дольку легкого.
Альвеолы выстланы однослойным плоским эпителием.
Респираторная бронхиола имеет такое же строение как терминальная бронхиола, но в ее стенку открываются единичные альвеолы.
Альвеолярные мешочки – дистальная часть ацинуса. Представлена гроздьевидными скоплениями альвеол. Эпителий однослойный плоский. Несмотря на это, различают два типа альвеолоцитов:
1.Респираторные. Клетки имеют очень маленькую ядерно-содержащую часть, и продолжительную безъядерную часть. Они буквально растянуты на тонкой базальной мембраны вдоль нее. Функция этих клеток: участие в газообмене. Этих клеток подавляющее большинство – 95%
2.Секреторные. Около 5%. Имеют кубическую форму, развитый синтетический аппарат. Находится большое количество слоистых пластинчатых телец.
3.Макрофаги легких.
Сурфактант
Функции:
1.Предотвращает спадение альвеол в конце вдоха.
2.Механическая защита альвеол
3.Препятствует трансдукции жидкости
4.Активация внутрилегочных макрофагов
5.Способствует опсонизации бактерий.
Сурфактанты-клетки 2 типа образуют аэро-гематический барьер ( между воздухом и кровью) . Он представлен:
1.Эндотелий капилляра
2.БМ капилляра
3.РВСТ
4.БМ альвеол
5.Отростки альвеолоцитов
6.Сурфактант
2. Лимфа, лимфапоэз
Лимфа – это производное плазмы крови и тканевой жидкости По химическому составу она близка плазме крови,
но в ней меньше белков. Проходя через лимфатические узлы, лимфа очищается от инородных веществ и бактерий и сильно обогащается свежими лимфоцитами. В начале лимфа попадает в лимфатические капилляры,
слепооканчивающиеся и не имеющие базальной мембраны. Далее она по лимфатическим сосудам подходит к лимфатическим узлам. Лимфа до узлов называется периферической. Очищенная лимфа, находящаяся в сосудах после узлов, называется промежуточной, а лимфа, протекающая в крупных сосудах – правом грудном протоке,
называется центральной и поступает в венозное русло. Нарушение оттока периферической лимфы приводит к отекам.
Лимфопоэз у эмбриона и плода происходит транзиторно в различных эмбриональных тканях. Лимфоидные предшественники присутствуют уже в желточном мешке. К 5-6 неделе гестации предшественники B- и T-клеток появляются в печени, где формируются участки B-лимфопоэза. Другие эмбриональные ткани, включая сальник и плаценту, также содержат предшественники В-клеток.
Селезенка становится очагом гемопоэза в третьем триместре беременности и остается местом гемопоэза до момента рождения. У взрослых селезенка функционирует как вторичный лимфоидный орган, в
котором располагаются зрелые T- и B-клетки. После рождения костный мозг становится основным местом развития миелоидных клеток и B-лимфоцитов.
Формирование большинства T-клеток происходит в тимусе. На 7-8 неделе эмбрионального развития формирующийся тимус заселяется принесенными с кровью клетками-предшественницами, у взрослых в тимус перемещаются костномозговые предшественники, где из них развиваются Т-лимфоциты, а процесс называется Т-лимфопоэзом.
В-лимфоцитопоэза осуществляется в красном костном мозге, где образуются следующие классы клеток:
x1 класс — стволовые клетки;
x2 класс — полустволовые клетки-предшественницы лимфопоэза;
x3 класс — унипотентные В-поэтинчувствительные клетки-предшественницы В-лимфоцитопоэза.
Второй этап Большинство этап также осуществляется в красном костном мозге, где из унипотентных В-клеток образуются В-лимфобласты — 4 класс, затем В-пролимфоциты — 5 класс и лимфоциты — 6 класс (рецепторные или В0). В процессе второго этапа В-лимфоциты приобретают разнообразные рецепторы к антигенам. При этом установлено, что рецепторы представлены белкамииммуноглобулинами.
Третий этап — антигензависимая дифференцировка осуществляется в В-зонах периферических лимфоидных органов (лимфатических узлов, селезенки и других) где происходит встреча антигена с соответствующим В-рецепторным лимфоцитом, его последующая активация и трансформация в иммунобласт. Однако это происходит только при участии дополнительных клеток — макрофага, Т- хелпера. Процесс взаимодействия протекает в следующей последовательности:
xмакрофаг фагоцитирует антиген и выносит детерминанты на поверхность;
xвоздействует антигенными детерминантами на рецепторы В-лимфоцита;
xвоздействует этими же детерминантами на рецепторы Т-хелпера и Т-супрессора.
Сочетанным воздействием на активированный В-лимфоцит лимфокинов Т-хелперов и Т-супрессоров и регулируется интенсивность гуморального иммунитета. Полное угнетение иммунитета носит название толерантности или ареактивности, то есть отсутствия иммунной реакции на антиген. Оно может обуславливаться как преимущественным стимулированием антигенами Т-супрессора, так и угнетением функции Т-хелперов или гибелью Т-хелперов (например, при СПИДе).
3. Плацента
Плацента является чрезвычайно важным органом, объединяющим функциональные системы матери и плода.
В плаценте различают две поверхности: материнскую, прилегающую к стенке матки, и плодовую, обращенную в полость амниона.
Основной структурно-функциональной единицей плаценты считают котиледон — дольку плаценты, образованную стволовой ворсиной I порядка с отходящими от нее ветвями — ворсинами И и III порядка (рис. 18).
В межворсинчатом пространстве различают 3 отдела: артериальный (в центральной части котиледона), капиллярный (при основании котиледона), венозный (соответствует субхориальному и междолевому пространствам).
Из спиральных артерий матки кровь под большим давлением впадает в центральную часть котиледона, проникая через капиллярную сеть в субхориальный и междолевой отделы, откуда поступает в вены, расположенные у основания котиледона и по периферии плаценты.
В терминальных ворсинах через плацентарный барьер осуществляется обмен между кровью матери и плода.
Функции плаценты сложны и многообразны.
Дыхательная функция
Питание.
Плацента накапливает витамины и регулирует их поступление к плоду в зависимости от их содержания в крови матери.
Плацента обладает транспортной, депонирующей и выделительной функциями в отношении многих электролитов, в том числе важнейших микроэлементов (железо, медь, марганец, кобальт и др.).
Выполняя гормональную функцию, плацента вместе с плодом образует единую эндокринную систему (фетоплацентарная система). В плаценте осуществляются процессы синтеза, секреции и превращения гормонов белковой и стероидной природы. Продукция гормонов происходит в синцитии трофобласта, децидуальной ткани.
Обладая системами синтеза гуморальных факторов, тормозящих иммуно-компетентные клетки матери, плацента является компонентом системы иммуно-биологигеской защиты плода. Плацента как иммунный барьер разделяет два генетически чужеродных организма (мать и плод), предотвращая тем самым возникновение между ними иммунного конфликта.
Плацента обладает способностью защищать организм плода от неблагоприятного воздействия вредных факторов, попавших в организм матери (токсические вещества, некоторые лекарственные средства, микроорганизмы и др.). Однако барьерная функция плаценты избирательна, и для некоторых повреждающих веществ она оказывается недостаточной.
4. Задача про лучевую болезнь
16билет
1.Орган слуха
Развитие: В эктодерме головы эмбриона образуются утолщения - слуховые плакоды. При их впячивании появляются слуховые ямки и слуховые пузырьки, выстланные многорядным эпителием. Затем слуховые пузырьки разделяются перетяжкой на два отдела - закладку сферического пузырька и улитки, а также закладку эллиптического пузырька и полукружных каналов. Одновременно устанавливается связь со слуховыми нервными ганглиями, которые делятся на две части - преддверную и улитковую.
Наружное ухо:
Ушная раковина - в основе ушной раковины - эластический хрящ, покрытый кожей.
Наружный слуховой проход - В коже наружного слухового прохода сальные, церуминозные железы, которые выделяют ушную серу. Под кожей -в первой трети прохода - эластический хрящ, далее - костное вещество височной кости.
Барабанная перепонка - покрыта: с наружной поверхности - эпидермисом (т.е. многослойным плоским ороговевающим эпителием), с внутренней поверхности - слизистой оболочкой , включающей однослойный плоский эпителий и тонкий слой рыхлой соединительной ткани. Между эпидермисом и слизистой оболочкой - 2 слоя плотной оформленной соединительной ткани. В ней преобладают коллагеновые волокна, но имеются и эластические. В верхней части перепонки фиброзный слой истончён.
Среднее ухо:
Барабанная полость – выстлана слизистой оболочкой, включающей однослойный эпителий - плоский, а местами кубический или цилиндрический, и тонкий слой рыхлой соединительной ткани. Глубже располагается костное вещество височной кости.
Слуховая (евстахиева) труба - выстлана слизистой оболочкой, которая покрыта многорядным мерцательным эпителием, который содержит бокаловидные (слизистые) клетки; под эпителием - рыхлая соединительная ткань и в ней - слизистые железы. Под слизистой оболочкой - костная ткань височной кости (в верхней половине трубы) или эластический хрящ (в нижней половине).
Внутреннее ухо:
Состоит из костного лабиринта и расположенного в нем перепончатого лабиринта, в котором находятся рецепторные клетки – волосковые сенсорные эпителиоциты органа слуха и равновесия.
Слуховые рецепторные клетки расположены в спиральном органе улитки, а рецепторные клетки органа равновесия – в эллиптическом и сферическом мешочках и ампулах полукружных каналов. В перепончатом лабиринте внутреннего уха содержатся рецепторные клетки органа слуха и равновесия. Причём, в каждой части лабиринта (улитке, мешочках преддверия, полукружных каналах) рецепторные образования имеют строго определённую функцию. А в передачу сигнала от внешнего раздражителя на рецепторные клетки вовлечены перилимфа и эндолимфа. В перепончатой улитке находится орган слуха - т.н. спиральный (или кортиев) орган. Он воспринимает звуковые (акустические) колебания, которые передаются сюда в следующей последовательности: барабанная перепонка – слуховые косточки – окно преддверия лабиринта – перилимфа улитки – эндолимфа перепончатой улитки. Колебания перилимфы (и эндолимфы) улитки вызывают раздражение определённых сенсоэпителиальных волосковых клеток кортиева органа. В эллиптическом мешочке рецепторы реагируют на гравитационные воздействия. В сферическом мешочке сенсоэпителиальные клетки реагируют не только на гравитацию, но и на вибрацию. В полукружных каналах рецепторы реагируют на угловые ускорения.
2. Сердечная мышечная ткань
Структурно-функциональной единицей является клетка —кардиомиоцит. По строению и функциям кардиомиоциты подразделяются на две основные группы:
xтипичные или сократительные кардиомиоциты, образующие своей совокупностью миокард;
xатипичные кардиомиоциты, составляющие проводящую систему сердца и подразделяющиеся в свою очередь на три разновидности.
Сократительные кардиомиоциты, соединяясь встык друг с другом, образуют функциональные мышечные волокна, между которыми имеются многочисленные анастомозы. Благодаря этому из отдельных кардиомиоцитов формируется сеть — функциональный синтиций. Наличие щелевидных
контактов между кардиомиоцитами обеспечивает одновременное и содружественное их сокращение вначале в предсердиях, а затем и в желудочках.
Области контактов соседних кардиомиоцитов носят название вставочных дисков. Вставочные диски — это места контактов цитолеммы соседних кардиомиоцитов, включающие в себя простые, десмосомные и щелевидные контакты. Обычно во вставочных дисках различают поперечный и продольный фрагменты. В области поперечных фрагментов имеются расширенные десмосомные соединения. В области продольных фрагментов локализуются щелевидные контакты. Посредством вставочных дисков обеспечивается как механическая, так и метаболическая (прежде всего ионная) связь кардиомиоцитов.
Вторая разновидность кардиомиоцитов — атипичные кардиомиоциты образуют проводящую систему сердца, состоящую из:
xсинусо-предсердный узел;
xпредсердно-желудочковый узел;
xпредсердно-желудочковый пучок (пучок Гиса)ствол, правую и левую ножки;
xконцевые разветвления ножек — волокна Пункинье.
Атипичные кардиомиоциты обеспечивают генерирование биопотенциалов, их проведение и передачу на сократительные кардиомиоциты.
По своей морфологии атипичные кардиомиоциты отличаются от типичным рядом особенностей:
xони крупнее (длина 100 мкм, толщина 50 мкм);
xв цитоплазме содержимся мало миофибрилл, которые расположены неупорядочено и потому атипичные кардиомиоциты не имеют поперечной исчерченности;
xплазмолемма не образует Т-канальцев;
xво вставочных дисках между этими клетками отсутствуют десмосомы и щелевидные контакты.
Атипичные кардиомиоциты различных отделов проводящей системы отличаются между собой по структуре и функциям и подразделяются на три основные разновидности:
xР-клетки (пейсмекеры) водители ритма (I типа);
xпереходные клетки (II типа);
xклетки пучка Гиса и волокон Пуркинье (III тип).
Клетки I типа (Р-клетки) составляют основу синусо-предсердного узла, а также в небольшом количестве содержатся в атриовентрикулярном узле. Эти клетки способны самостоятельно генерировать с определенной частотой биопотенциалы и передавать их на переходные клетки (II типа), а последние передают импульсы на клетки III типа, от которых биопотенциалы передаются на сократительные кардиомиоциты.
Источники развития кардиомиоцитов — миоэпителиальные пластинки, представляющие собой определенные участки висцеральных листков спланхнотома, а конкретнееиз целомического эпителия этих участков.
Иннервация сердечной мышечной ткани
Биопотенциалы сократительные кардиомиоциты получают из двух источников:
xиз проводящей системы сердца (прежде всего из синусо-предсердного узла);
xиз вегетативной нервной системы (из ее симпатической и парасимпатической части).
Регенерация сердечной мышечной ткани
При поражении значительных участков миокарда (в частности, при инфаркте миокарда) восстановление дефекта происходит за счет разрастания соединительной ткани и образования рубцов (пластическая регенерация).
3. Клеточная теория
Клеточная теория. В настоящее время клеточная теория гласит:
1. Клетка — наименьшая единица живого. Представление о клетке как о наименьшей самостоятельной живой единице было известно из работ Т.Шванна и др. Р.Вирхов считал, что каждая клетка несет в себе полную характеристику жизни.
2. Сходство клеток разных организмов по строению. Клетки могут иметь самую разнообразную внешнюю форму: шаровидную (лейкоциты), многогранную (клетки железистого эпителия), звездчатую и разветвленно-отростчатую (нервные и костные клетки), веретеновидную (гладкие мышечные клетки, фибробласты), призматическую (кишечный эпителиоцит), уплощенную (эндотелиоцит, мезотелиоцит) и др.
3. Размножение клеток путем деления исходной клетки. Т. Шванн в своих обобщениях подчеркивал одинаковость принципа развития клеток как у животных, так и у растений. Сформулированное позднее Р. Вирховым положение «всякая клетка от клетки» можно считать биологическим законом.
Размножение клеток, прокариотических и эукариотичес-ких, происходит только путем деления исходной клетки, которому предшествует воспроизведение ее генетического материала (репродукция ДНК).
4. Клетки как части целостного организма. Каждое проявление деятельности целого организма, будь то реакция на раздражение или движение, иммунные реакции и многое другое, осуществляется специализированными клетками.
Многоклеточные организмы представляют собой сложные ансамбли специализированных клеток, объединенных в целостные, интегрированные системы тканей и органов, подчиненные и связанные межклеточными, гуморальными и нервными формами регуляции.
4. Задача про ухо
17 билет
1.Кора головного мозга. Структурная организация нейронов.
Вголовном мозге различают серое и белое вещество. Большая часть серого вещества головного мозга располагается на поверхности большого мозга и в мозжечке, образуя их кору. Меньшая часть образует
многочисленные ядра ствола мозга.
Строение. Кора большого мозга представлена слоем серого вещества. Различные участки ее, отличающиеся друг от друга некоторыми особенностями расположения и строения клеток (цитоархитектоника), расположения волокон (миелоархитектоника) и функциональным значением, называются полями. Они представляют собой места высшего анализа и синтеза нервных импульсов.
Развитие коры больших полушарий (неокортекса) человека в эмбриогенезе происходит из вентрикулярной герминативной зоны конечного мозга, где расположены малоспециализированные пролиферирующие клетки. Из этих клеток дифференцируются нейроциты неокортекса.
Цитоархитектоника коры большого мозга. Мультиполярные нейроны коры весьма разнообразны по форме. Среди них можно выделить пирамидные, звездчатые, веретенообразные, паукообразные и горизонтальные нейроны.
Нейроны коры расположены слоями. Каждый слой характеризуется преобладанием какого-либо одного вида клеток. В двигательной зоне коры различают 6 основных слоев: I — молекулярный, II — наружный зернистый, III — nuрамидных нейронов, IV — внутренний зернистый, V — ганглионарный, VI — слой полиморфных клеток.
Молекулярный слой коры Их нейриты проходят параллельно поверхности мозга в составе тангенциального сплетения нервных волокон молекулярного слоя.
Наружный зернистый слой Дендриты этих клеток поднимаются в молекулярный слой. Нейриты или уходят в белое вещество, или, образуя дуги, также поступают в тангенциальное сплетение волокон молекулярного слоя.
Самый широкий слой коры большого мозга — пирамидный. От верхушки пирамидной клетки отходит главный дендрит, который располагается в молекулярном слое. Нейрит пирамидной клетки всегда отходит от ее основания.
Внутренний зернистый слой образован мелкими звездчатыми нейронами. В его состав входит большое количество горизонтальных волокон.
Ганглионарный слой коры образован крупными пирамидами, причем область прецентральной извилины содержит гигантские пирамиды.
Слой полиморфных клеток образован нейронами различной формы.
Модуль. Структурно-функциональной единицей неокортекса является модуль. Модуль организован вокруг кортико-кортикального волокна, представляющего собой волокно, идущее либо от пирамидных клеток того же полушария (ассоциативное волокно), либо от противоположного (комиссуральное).
Тормозная система модуля представлена следующими типами нейронов: 1) клетки с аксональной кисточкой; 2) корзинчатые нейроны; 3) аксоаксональные нейроны; 4) клетки с двойным букетом дендритов.
Миелоархитектоника коры. Среди нервных волокон коры полушарий большого мозга можно выделить ассоциативные волокна, связывающие отдельные участки коры одного полушария, комиссуральные, соединяющие кору различных полушарий, и проекционные волокна, как афферентные, так и эфферентные, которые связывают кору с ядрами низших отделов центральной нервной системы.
2. РВСТ. Клетки:происхождение, строение и функции
Рыхлая волокнистая соединительная ткань образуется из мезенхимы. Она формирует строму многих внутренних органов, сопровождает сосуды, замещает другие ткани при повреждении, является местом развития воспалительной реакции. Клетки этой ткани бывают:
1. Фибробласты. Фибробласты способны двигаться, формируя широкие выпячивания ламеллоподии. Движение клеток обеспечивается актино-миозиновыми комплексами. Фибробласты могут делиться митозом. Функции этих клеток заключаются в синтезе, выделении и трансформации компонентов межклеточного вещества. Они вырабатываютколлаген и другие белки, а также гликозаминогликаны.
2. Макрофаги. В цитоплазме имеются шероховатая плазматическая сеть, пластинчатый комплекс, митохондрии и многочисленные лизосомы. Активированные макрофаги увеличиваются в размерах и
начинают амебоидное движение, образуя псевдоподии. Они могут захватывать и переваривать бактерии, клеточный детрит и инородные частицы.
3.Тучные клетки (лаброциты, мастоциты или тканевые базофилы). Их цитоплазма заполнена большим количеством гранул темно-фиолетового цвета диаметром 300 700 нм, которые содержат ряд биологически активных веществ – гистамин, серотонин, гепарин и др. Функции этих клеток состоят в запуске воспалительного процесса путем секреции гистамина, регуляции химического состава межклеточного вещества и развитии аллергических реакций.
4.Плазмоциты (плазматические клетки) синтезируют и выделяют защитные молекулы –антитела.
Плазмоцит образуется из лимфоцитов.
5.Адвентициальные клетки. Они имеют удлиненную форму, веретеновидное ядро и локализуются обычно у капилляров. Эти клетки являются предшественниками фибробластов и липоцитов.
6.Эндотелиальные клетки. Эндотелиоциты обеспечивают транспорт веществ из крови в окружающую ткань и обратно. Эндотелий кровеносных капилляров располагается на базальной пластинке, но в лимфатических капиллярах и синусоидах кроветворных органов она отсутствует, а в капиллярах печени имеет поры.
7.Перициты (перикапиллярные клетки). Перициты способны к набуханию, на них заканчиваются нервные терминали эффекторных отростков нервных клеток.
Кроме перечисленных, в рыхлой волокнистой соединительной ткани могут встречаться также лимфоциты, нейтрофильные гранулоциты, меланоциты и другие типы клеток.
Межклеточное (промежуточное или межуточное) вещество рыхлой волокнистой соединительной ткани представленоволокнистым и аморфным компонентами.
Волокна в рыхлой волокнистой соединительной ткани бывают двух типов – коллагеновые и эластические. Коллагеновые волокна обычно собраны в извитые пучки или ленты толщиной 30 100 мкм и более, которые пересекают ткань в различных направлениях.Эластические волокна имеют диаметр 1 3 мкм, они прямые или плавно изогнутые, не формируют пучков. Коллагеновые и эластические волокна придают ткани прочность и упругость.
Аморфное вещество имеет сложный химический состав и обладает высокой вязкостью. Оно состоит из гликозаминогликанов, протеогликанов, белков плазмы крови, гормонов, низкомолекулярных органических веществ (аминокислот, пептидов, сахаров) и воды. Аморфное вещество активно участвует в обмене веществ между кровью и клетками, выполняет поддерживающую, защитную, фильтрационную и другие функции.
3. 1 неделя ВУР
Основные процессы:
1)Зигота – продолжительность стадии 30 часов Восстанавливается диплоидный евбор хромосом Происходит распределение эмбриональных индукторов Осуществляется передача наследственных свойст
2)Дробление – митотическое деление зиготы без фазы роста. У человека дробление полное (дробится вся зигота), неравномерное (образуется 2 типа различных по величине и окраске бластомеров), асинхронное (количество бластомеров нарастает в неправильном и особом порядке).
Одни бластомеры темные, крупные, медленно дробящиеся, образуют внутриклеточную массу (эмбриобласт). Из нее образуется тело зародыша и внезародышевые органы.
Другие бластомеры мелкие, светлые, быстро делящиеся – клетки трофобласта, связывающие зародыш с организмом матери.
3) Стадия морулы
Светлые бластомеры обрастают группу темных бластомеров и дробящийся зародыш приобретает вид шара состоящего из 16-32 бластомеров (4-5 сутки). Темные бластомеры морулы являются тотипотентными.
4) Стадия бластоцисты
На 5-е сутки зародыш состоит из более 100 бластомеров с пространством внутри – бластоцель. Наружные клетки образуют стенку бластоцисты – трофобласт – источник хориона. Внутренние клетки образуют эмбриобласт. Эта стадия характеризуется утратой тотипотентности.
4. Задача про продукты распада тканей и токсины
18билет
1.Легкие
Легкое состоит из бронхиального дерева и респираторного отдела.
Бронхиальное дерево.
Бронхиальное дерево состоит из видов бронхов:
5.Внелегочные бронхи ( бронхи крупного калибра). Сюда относят главные и зональные бронхи.
6.Внутрилёгочные бронхи – среднего калибра ( они находятся на препаратах). Сегментарые и субсегментарные.
7.Бронхи малого калибра.
8.Терминальные бронхиолы.
Бронхи крупного и среднего калибра. Стенка состоит из 4 оболочек.
5.Слизистая. Состоит из 3 слоев:
a.Эпителий. Многорядный призматический мерцательный. Клетки реснитчатые, бокаловидные, базальные и эндокринные. В бронхах среднего калибра количество рядов клеток уменьшается. Так же уменьшается число бокаловидных клеток.
b.Собственная пластинка. Рыхлая неоформленная соединительная ткань.
c.Мышечная пластина. Состоит из циркулярно расположенных гладких миоцитов. В бронхах среднего калибра толщина ее возрастает.
6.Подслизистая. Представлена рыхлой неоформленной соединительной тканью. Содержит концевые отделы белково-слизистых желез.
7.Фиброзно-хрящевая оболочка. Если перед нами главный бронх, то имеется гиалиновая хрящевая ткань в виде незамкнутых колец. Если долевые и зональные бронхи, то имеется гиалиновая хрящевая ткань в составе пластин. Если перед нами сегментарные и субсегментарные бронхи среднего калибра, то уже имеется эластическая хрящевая ткань в виде пластин – островков.
8.Адвентициальная оболочка. Представлена рыхлой неоформленной соединительной тканью.
Бронх малого калибра. Стенка состоит из двух оболочек.
3.Слизистая. Представлена двухрядным эпителием. Бокаловидные клетки отсутствуют. Уменьшается количество реснитчатых клеток. За эпителием идет собственная и мышечная
пластинки. Представлена циркулярно расположенными гладкими миоцитами. Здесь мышечная пластинка имеет наибольшную толщину. Фиброзно хрящевой оболочки нет. Каркасная функция отсутствует. Благодаря сильной мышечной пластинке возможен стойкий приступ бронхиального спазма.
4. Адвентициальная оболочка.
Термиональная бронхиола. Стенка состоит из двух оболочек:
3.Слизистая. Эпителий однослойный кубический.
a.Клетки Кларра. Секреторные эпителиоциты, имеют куполообразную форму, округлое ядро, развитый синтетический аппарат, продуцируют гликозоамингликаны, липопротеины и гликопротеины, которые входят в состав сурфактанта; так же продуцируют дыхательные элементы (цитохром Р).
b.Щеточные клетки, имеют призматическую форму. На апикальной части микровыросты цитоплазмы. Функция этих клеток – обонятельная.
c.Низкодифференцированные клетки.
4.Адвентиция.
Респираторный отдел легких.
Структурно-функциональной единицей респираторного отдела является легочный ацинус.
Ацинус состоит из последовательных ветвлений респираторной бронхиолы, альвеолярного хода и альвеолярных мешочков. Ацинусы отделяются прослойками соединительной ткани и 12-18 ацинусов составляют дольку легкого.
Альвеолы выстланы однослойным плоским эпителием.
Респираторная бронхиола имеет такое же строение как терминальная бронхиола, но в ее стенку открываются единичные альвеолы.
Альвеолярные мешочки – дистальная часть ацинуса. Представлена гроздьевидными скоплениями альвеол. Эпителий однослойный плоский. Несмотря на это, различают два типа альвеолоцитов:
4.Респираторные. Клетки имеют очень маленькую ядерно-содержащую часть, и продолжительную безъядерную часть. Они буквально растянуты на тонкой базальной мембраны вдоль нее. Функция этих клеток: участие в газообмене. Этих клеток подавляющее большинство – 95%
5.Секреторные. Около 5%. Имеют кубическую форму, развитый синтетический аппарат. Находится большое количество слоистых пластинчатых телец.
6.Макрофаги легких.
Сурфактант
Функции:
6.Предотвращает спадение альвеол в конце вдоха.
7.Механическая защита альвеол
8.Препятствует трансдукции жидкости
9.Активация внутрилегочных макрофагов
10.Способствует опсонизации бактерий.
Сурфактанты-клетки 2 типа образуют аэро-гематический барьер ( между воздухом и кровью) . Он представлен:
7.Эндотелий капилляра
8.БМ капилляра
