- •Концепция RUP
- •Методы проектирования ИС
- •IDEF0 (Integration Definition for Function Modeling)
- •проектирования
- •Объектно-ориентированное проектирование
- •Почему объектная ориентация работает???
- •Язык UML – унифицированный язык моделирования
- •Что такое UML?
- •Большие современные программные системы, как правило, нуждаются в инструментальной поддержке.
- •Rational Unified
- •RUP использует итеративную модель разработки.
- •1. Начальная стадия (Inception)
- •2. Уточнение (Elaboration)
- •3. Построение (Construction)
- •4. Внедрение (Transition)
- •Rational Unified Process и его содержание
- •RUP основан на трех ключевых идеях.
- •Принципы моделирования
- •иерархическое построение - при описании системы используются различные уровни абстрагирования и детализации в
- •Диаграммы UML и их виды
- •Структурные диаграммы:
- •При этом в качестве самостоятельных представлений в языке UML используются следующие диаграммы:
- •Диаграмма вариантов использования представляет собой наиболее общую
- •Что значит - «унифицированный язык»?
- •Объекты и UML
- •Основные элементы UML
- •Сущности UML
- •Сущности UML
- •Структурные сущности
- •Активный класс(active class) имеет экземпляры, каждый из которых выполняет и управляет собственным потоком
- •Поведенческие сущности являются динамическими составляющими модели UML. Это глаголы, которые описывают поведение модели
- •Сущности UML
- •Группирующие сущности являются
- •Аннотационные сущности - это пояснительные части модели UML: комментарии для дополнительного описания, разъяснения
- •Отношения
- •Пример UML отношений
- •В языке UML определены следующие типы отношений: зависимость , ассоциация , обобщение и
- •Ассоциация представляет наиболее абстрактную семантическую связь между двумя элементами, которая выявляется на ранней
- •Диаграммы
- •1. Технология построения диаграммы Варианты использования в UML
- •1. Диаграммы вариантов использования (Use Case)
- •Назначение диаграмм Варианты использования
- •Суть диаграммы use
- •В языке UML пакет Варианты использования является подпакетом пакета Элементы поведения.
- •Стандартные
- •Содержание варианта использования может быть представлено в форме дополнительного пояснительного текста, который раскрывает
- ••Варианты использования описывают не только взаимодействия между пользователями и сущностью, но также реакции
- •Хорошо описанный вариант использования имеет следующие атрибуты:
- •Актеры
- ••В качестве актеров могут выступать другие системы, подсистемы проектируемой системы или отдельные классы.
- ••Поскольку в общем случае актер всегда находится вне системы, его внутренняя структура никак
- •Интерфейсы
- ••На диаграмме вариантов использования интерфейс изображается в виде маленького круга, рядом с которым
- ••Важность интерфейсов заключается в том, что они
- •Примечания
- •Отношения на диаграмме вариантов
- •Два варианта использования, определенные для одной и той же сущности, не могут взаимодействовать
- •Отношение ассоциации
- •Отношение ассоциации
- •Два символа, разделенные двумя точками. При этом первый из них является целым неотрицательным
- •Отношение расширения
- •Отношение обобщения
- •Отношение включения
- •Пример диаграммы вариантов использования
- •Значения указанных на данной диаграмме кратностей отражают общие правила оформления заказов на покупку
- •На следующем этапе разработки данной диаграммы вариант использования "Оформить заказ на покупку товара"
- •Приведенная диаграмма вариантов использования, в свою очередь, может быть детализирована далее с целью
- •В рамках рассматриваемой системы продажи товаров может иметь самостоятельное значение и специфические особенности
- •Второе из основных направлений детализации диаграмм вариантов использования связано с последующей структуризацией ее
- •ICQ (от англ. I seek you — «я ищу тебя») — бесплатная система
- •Диаграмма Вариантов Использования для системы обработки заказов.
- •В заключение приведем пару примеров законченных диаграмм прецедентов. Первый пример (смысл которого понятен
- •Подводя итоги, можно выделить такие цели создания диаграмм прецедентов:
- •2.Технология построения диаграммы классов в UML
- •Понятие класса
- •Предполагается, что окончательный вариант диаграммы содержит наиболее полное описание классов, которые состоят из
- •Имя класса
- •Атрибуты класса
- •Имя атрибута представляет собой строку текста, которая используется в качестве идентификатора соответствующего атрибута
- •Тип атрибута представляет собой выражение, семантика которого определяется языком спецификации соответствующей модели. В
- •Исходное значение служит для задания некоторого начального значения для соответствующего атрибута в момент
- •При задании атрибутов могут быть использованы две дополнительные синтаксические конструкции — это подчеркивание
- •Строка-свойство служит для указания значений атрибута, которые не могут быть изменены в программе
- •Операция
- •Имя операции является единственным обязательным элементом синтаксического обозначения операции.
- •Строка-свойство служит для указания значений свойств, которые могут быть применены к данному элементу.
- •Примеры операций:
- •Отношения между классами
- •На диаграмме классов данное отношение связывает отдельные классы между собой, при этом стрелка
- •Так, для рассмотренного ранее примера кратность "1" для класса "Компания" означает, что каждый
- •Частным случаем отношения ассоциации является отношение агрегации. Оно имеет место между несколькими классами
- •Отношение обобщения является обычным отношением между более общим элементом (родителем или предком) и
- •Первый пример весьма прост. Иллюстрирует с помощью операции наследования или генерализации "генеалогическое древо"
- •И опять-таки смысл этой диаграммы ясен без особых пояснений. Даже бегло рассмотрев ее,
- •здесь уже все более серьезно - кроме кратности обозначены свойства (и их типы)
- •Интерфейсы
- •Таким образом , Диаграмма классов UML
- •В языке UML определены три основных стереотипа классов: Boundary (граница);
- •Управляющие классы
- •ОПЕРАЦИИ
- •Операции реализации
- •Связ
- •Имена связей
- •Пакет. Механизм пакетов
- •Другой подход заключается в объединении классов по их функциональности. Например, в пакете Security
- •Зависимость между двумя элементами имеет место в том случае, если изменения в определении
- •Объекты
- •Примеры изображения объектов
- •1.Объект (object) - конкретная материализация абстракции;
- •Для чего нужны диаграммы объектов?
- •О чем здесь идет речь, в принципе, понятно: некоторая фирма "раскручивает" новый товар
- •Эта диаграмма тоже понятна в общих чертах даже без дополнительных объяснений. Здесь мы
- •Динамические диаграммы
- •Потоки данных показываются в виде стрелок. Синхронизации двух видов — развилки (forks) и
- •Примеры диаграмм активности
- •Процесс доставки
- •Диаграмма последовательностей (sequence diagram)
- •- На диаграмме последовательности изображаются исключительно те объекты, которые непосредственно участвуют во взаимодействии
- •- Второе измерение диаграммы последовательности – вертикальная временная ось, направленная сверху вниз. Начальному
- •-Вовсе не обязательно создавать все объекты в начальный момент
- •Фокус управления
- •ФОКУС УПРАВЛЕНИЯ
- •Теперь о том, какие обозначения используются на диаграмме последовательностей.
- •это работа обычного домового лифта, которым мы пользуемся каждый день! Кстати, посмотрите на
- •Диаграмма кооперации
- •- Далее, как и на диаграмме классов, показываются структурные отношения между объектами в
- •Как видите, эта диаграмма описывает (очень грубо) работу персонала библиотеки по обслуживанию клиентов:
- •Описывает процесс управления учебными курсами (очевидно, путем создания их из готовых модулей) для
- •Диаграмма кооперации
- •- Диаграммы компонентов(component diagrams)
- •Компонент изображается в виде прямоугольника с несколькими прямоугольными или другой формы «зубами» на
- •На диаграмме компонентов можно также увидеть пакеты, изображаемые в виде «папок», точнее —
- •Диаграмма развертывания (deployment diagram)
- •Диаграмма развертывания (deployment diagram)
- •Диаграмма развертывания показывает топологию системы и распределение компонентов системы по ее узлам, а
- •ООП и последовательность построения диаграмм
- •5.Шаблоны или параметризованные классы
- •Шаблон не может быть непосредственно использован в качестве класса, поскольку содержит неопределенные параметры.
- •Выводы
Концепция RUP
Технология построения диаграмм UML
Методы проектирования ИС
Объектно-ориентированное |
Структурное проектирование |
||
проектирование |
Методологии: |
||
Методологии: |
|||
|
IDEF0 |
||
• UML |
|||
|
DFD |
||
|
|||
|
|
IDEF3 |
|
IDEF0 (Integration Definition for Function Modeling)
Методология и стандарт функционального моделирования бизнес-процессов и описания бизнес-процессов. С помощью графического языка IDEF0, изучаемая система предстает в виде набора взаимосвязанных функциональных блоков. Моделирование бизнес-процессов средствами IDEF0, как правило, является первым этапом изучения системы.
IDEF3 (Integration Definition for Function Modeling) |
|
||||||||
С помощью IDEF3 описывается логика выполнения действий. |
|||||||||
IDEF3 |
может |
использоваться |
самостоятельно |
и совместно |
|||||
с методологией |
IDEF0: любой функциональный блок IDEF0 |
||||||||
может |
быть |
представлен |
в виде |
последовательности |
|||||
процессов или |
операций |
средствами |
IDEF3. |
Если IDEF0 |
|||||
описывает, |
что делается |
в системе, |
|
то IDEF3 |
описывает, |
||||
как это делается. |
|
|
|
|
|
|
|||
DFD (Data Flow Diagrams) |
данных. |
Описывают |
|
внешние |
|||||
Диаграммы |
|
потоков |
|
||||||
по отношению |
к системе |
источники |
|
и адресаты |
данных, |
||||
логические |
функции, потоки |
данных |
и хранилища |
данных |
|||||
к которым |
осуществляется |
доступ. Как показывает практика, |
|||||||
это один из самых простых, доступных и наглядных стандартов для описания бизнес-процессов.
проектирования
Функциональную точку зрения трудно развивать
Реальные системы трудно охарактеризовать
функционально
Фокусирование на функциональности теряет из виду
данные
Функциональная ориентация производит код, менее
пригодный для многократного использования
ИТОГ:
Бертран Мейер-создатель языка программирования Эйфель.
(Автор: Моделируем сервис-ориентированную архитектуру при помощи Rational Software Architect)
«Нисходящее функциональное проектирование плохо адаптируется к разработке крупных программных систем. Нисходящее проектирование остается полезной парадигмой для малых программ и индивидуальных алгоритмов..., но оно практически не масштабируется на большие системы. Смысл не в том, что Вы не можете разрабатывать систему сверху вниз: можете. Но, выторговывая для себя краткосрочное удобство за длительную негибкость, Вы некорректно нагромождаете одну функцию над другой и (достаточно часто) функциональный интерфейс над более важными параметрами системы.
Вы теряете из виду аспект данных, и Вы жертвуете возможностью многократного использования !!!».
Объектно-ориентированное проектирование
Мейер:
◦«Объектно-ориентированное проектирование – это конструирование программных систем в виде структурированных коллекций, реализующих абстрактные типы данных".
Неформально он определяет это как
◦“Метод, который ведет к архитектурам программ, основанным на объектах, используемых системой или подсистемой предпочтительнее чем "функция", которую система, как предполагается, выполняет".
Почему объектная ориентация работает???
Объектная ориентация работает на более высоком уровне абстракции.
Данные, на которых базируется система более стабильны, нежели функциональные возможности, которые эта система поддерживает.
Объектно-ориентированное проектирование и программирование поддерживает многократное использование кода.
Язык UML – унифицированный язык моделирования
UML предоставляет выразительные средства для создания визуальных моделей, которые:
◦единообразно понимаются всеми разработчиками, вовлеченными в проект и являются средством коммуникации в рамках проекта.
Унифицированный Язык Моделирования (UML):
◦не зависит от объектно-ориентированных (ОО) языков программирования,
◦не зависит от используемой методологии разработки проекта,
◦может поддерживать любой ОО язык программирования.
UML является открытым и обладает средствами расширения
Что такое UML?
Унифицированный язык моделирования (Unified Modeling Language, UML) – это универсальный язык визуального моделирования систем.
Хотя чаще всего UML ассоциируется с моделированием ОО программных систем, он имеет намного более широкое применение благодаря свойственной ему расширяемости.
UML объединил лучшие современные технические приемы моделирования и разработки программного обеспечения.
По сути, язык UML был задуман так, чтобы его можно было реализовать посредством его же инструментальных средств.
Большие современные программные системы, как правило, нуждаются в инструментальной поддержке.
UML-диаграммы легко воспринимаются и при этом без труда генерируются компьютерами.
Важно понимать, что UML не предлагает нам какой-либо методологии моделирования.
Конечно, некоторые методические аспекты подразумеваются элементами, составляющими модель UML, но сам UML предоставляет собой лишь визуальный синтаксис, который можно использовать для создания моделей.
UML это не методология, это унифицированный язык визуального моделирования!
UP – это методология.
Унифицированный процесс (Unified Process,
UP) – это методология.
Rational Unified
Process (RUP) — методология разработки программного обеспечения, созданная компанией Rational Software.
Ранняя идентификация и непрерывное (до окончания проекта) устранение основных рисков.
Концентрация на выполнении требований заказчиков к исполняемой программе (анализ и построение модели прецедентов (вариантов использования)).
Ожидание изменений в требованиях, проектных решениях и реализации в процессе разработки.
Компонентная архитектура, реализуемая и тестируемая на ранних стадиях проекта.
Постоянное обеспечение качества на всех этапах разработки проекта (продукта).
Работа над проектом в сплочённой команде, ключевая роль в которой принадлежит архитекторам.
