Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
2 сем / ЭКЗ / КОЛЛОК 3.docx
Скачиваний:
0
Добавлен:
10.02.2026
Размер:
5.84 Mб
Скачать

20. Теорема о циркуляции вектора напряженности электрического поля.

Существуют два равнозначных определения консервативной силы. Оба они подробно обсуждались в механике.

1. Консервативной называется сила, работа которой не зависит от формы траектории.

2. Консервативной называется сила, работа которой на замкнутой траектории равна нулю.

Рассмотрим перемещение заряда q в электростатическом поле   по замкнутой траектории (рис. 3.5.). Заряд из точки 1 перемещается по пути L1 в точку 2, а затем возвращается в исходное положение по другому пути L2. В процессе этого движения на заряд со стороны поля действует консервативная электрическая сила:

.

Работа этой силы на замкнутой траектории L = L1 + L2 равна нулю:

.

Это уравнение, упростив, запишем так:

.                       (3.18)

Разберём подробно последнее уравнение. Подынтегральное выражение — элементарная работа электрической силы, действующей на единичный положительный заряд, на перемещении   (рис. 3.6.):

,                  (3.19)

здесь q = 1 — единичный заряд.

При подсчёте работы на замкнутой траектории необходимо сложить элементарные работы электрической силы на всех участках траектории. Иными словами, проинтегрировать (3.19) по замкнутому контуру L:

.             (3.20)

Интеграл по замкнутому контуру   =   называется циркуляцией вектора напряжённости электростатического поля по контуру L. По своей сути циркуляция вектора напряжённости — это работа электростатического поля, совершаемая при перемещении по замкнутому контуру единичного положительного заряда.

Так как речь идёт о работе консервативной силы, то на замкнутой траектории она равна нулю:

.

Теорема о циркуляции в электростатике: циркуляция вектора напряжённости электростатического поля по любому замкнутому контуру равна нулю.

21. Энергия взаимодействия системы зарядов

Найдем потенциальную энергию системы двух точечных зарядов Q1 и Q2, находящихся на расстоянии r друг от друга. Каждый из этих зарядов в поле другого обладает потенциальной энергией:

где φ12 и φ21 — соответственно потенциа­лы, создаваемые зарядом Q2 в точке на­хождения заряда Q1 и зарядом Q1 в точке нахождения заряда Q2. Потенциал поля точечного заряда равен:

поэтому W1=W2=W и

Добавляя к системе из двух зарядов по­следовательно заряды Q3, Q4, …, можно убедиться в том, что в случае n непод­вижных зарядов энергия взаимодействия системы точечных зарядов равна

где 𝛗i — потенциал, создаваемый в той точке, где находится заряд Qi, всеми за­рядами, кроме i-го.

22. Поляризация диэлектриков - Явление, связанное с ограниченным смещением связанных зарядов в диэлектрике или поворотом электрических диполей, обычно под воздействием внешнего электрического поля. Поляризацию диэлектриков характеризует вектор электрической поляризации

23. Различные виды диэлектриков

Сегнетоэлектрики - Все сегнетоэлектрики обнаруживают резкую анизотропию свойств (сегнетоэлектрические свойства могут наблюдаться только вдоль одной из осей кристалла). У изотропных диэлектриков поляризация всех молекул одинакова, у анизотропных – поляризация, и следовательно,

вектор поляризации   в разных направлениях разные. В настоящее время известно несколько сотен сегнетоэлектриков.

Основные свойства сегнетоэлектриков:

1. Диэлектрическая проницаемость ε в некотором температурном интервале велика(

).

2.Значение ε зависит не только от внешнего поля E0, но и от предыстории образца.

3.Диэлектрическая проницаемость ε (а следовательно, и Р) – нелинейно зависит от напряженности внешнего электростатического поля (нелинейные диэлектрики).

4. Наличие точки Кюри – температуры, при которой (и выше) сегнетоэлектрические свойства пропадают. При этой температуре происходит фазовый переход 2-го рода. (Например, титанат бария: 133º С; сегнетова соль: – 18 + 24º С; дигидрофосфат калия: – 150º С; ниобат лития 1210º С).

Пример: сегнетоэлектрики – электрические конденсаторы, ограничители предельно допустимого тока, позисторы, запоминающие устройства;

Пьезоэлектрики

Некоторые диэлектрики поляризуются не только под действием электростатического поля, но и под действием механической деформации. Это явление называется

пьезоэлектрическим эффектом.

Явление открыто братьями Пьером и Жаком Кюри в 1880 году.

Если на грани кристалла наложить металлические электроды (обкладки), то при деформации кристалла с помощью силы   на обкладках возникнет разность потенциалов. Если замкнуть обкладки, то потечет ток.

Продемонстрировать пьезоэффект можно рисунком 2.42.

Сейчас известно более 1800 пьезокристаллов. Все сегнетоэлектрики обладают пьезоэлектрическими свойствами.

Возможен и обратный пьезоэлектрический эффект. Возникновение поляризации сопровождается механическими деформациями. Если на пьезоэлектрический кристалл подать напряжение, то возникнут механические деформации кристалла, причем, деформации будут пропорциональны приложенному электростатическому полю Е0.

Рис. 2.1.43. Пьезоэффект

Пример: пьезоэлектрики – генераторы ВЧ и пошаговые моторы, микрофоны, наушники, датчики давления, частотные фильтры, пьезоэлектрические адаптеры;

Пироэлектрики

Пироэлектрики – это кристаллические диэлектрики, обладающие спонтанной электрической поляризацией во всей температурной области, вплоть до температуры плавления.

в пироэлектриках поляризация Р линейно зависит от величины внешнего электрического поля, т.е. пироэлектрики являются линейными диэлектриками.

Пироэлектричество – появление электрических зарядов на поверхности некоторых кристаллов при их нагревании или охлаждении. При нагревании один конец диэлектрика заряжается положительно, а при охлаждении он же – отрицательно. Появление зарядов связано с изменением существующей поляризации при изменении температуры кристаллов. 

Пример: пироэлектрики – позисторы, детекторы ИК-излучения, болометры (датчики инфракрасного излучения), электрооптические модуляторы.

Соседние файлы в папке ЭКЗ