Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1 сем / ЭКЗ / КОЛЛОК 1.doc
Скачиваний:
0
Добавлен:
10.02.2026
Размер:
2.98 Mб
Скачать
  1. Неинерциальные прямолинейно движущиеся системы отсчета. Силы инерции.

- Неинерциальные СО – системы отсчёта, движущиеся относительно инерциальных систем отсчета с ускорением.

Геоцентрическая система отсчета (жёстко связанная с Землёй) в общем случае является неинерциальной вследствие суточного вращения Земли.

В неинерциальных СО первый закон Ньютона нарушается: тело получает ускорение без взаимодействия с другими телами.

В неинерциальных СО второй закон Ньютона нарушается: при наличии взаимодействия тело не получает ускорение.

Сила инерции – фиктивная сила в том смысле, что она не обусловлена взаимодействием с другими телами, а вызвана ускоренным движением НСО относительно ИСО. Т.к. сила инерции обусловлена ускоренным движением системы отсчёта относительно другой СО, то она не подчиняется третьему закону Ньютона.

- сила инерции

По принципу Даламбера , где - векторная сумма сил взаимодействия,

  1. Неинерциальные вращающиеся системы отсчета. Сила Кориолиса.

- Центробежная сила инерции во вращающихся СО зависит от местоположения тела в СО.

Тело m покоится относительно диска (НСО),

т.е. вращается вместе с диском, тогда

Свойства центробежной силы:

1) величина центробежной силы инерции (Fц.б) зависит от положения тела во вращающейся СО,

2) величина Fц.б не зависит от скорости тела относительно вращающейся СО,

3) Fц.б является консервативной.

4) не зависит от формы пути

Из-за Fц.б направления Fтяжести и Fтяготения не совпадают.

Сила Кариолиса –

действует сила, обусловленная инерцией

В общем случае

Если материальная точка движется во вращающейся СО со скоростью vн, то на материальную точку действует сила Кариолиса

Свойства силы Кариолиса:

1) величина FК не зависит от положения материальной точки во вращающейся СО,

2) величина FК зависит от скорости vн,

3) FК работы не совершает. Эта сила называется гироскопической.

  1. Примеры движений, в которых проявляется сила Кориолиса.

- Силы Кориолиса проявляются и при качаниях маятника (маятник Фуко). Для простоты предположим, что маятник расположен на полюсе. На северном полюсе сила Кориолиса будет направлена вправо по ходу маятника. В итоге траектория движения маятника будет иметь вид розетки.

Плоскость качаний маятника поворачивается относительно Земли в направлении часовой стрелки, причем за сутки она совершает один оборот. Относительно гелиоцентрической системы отсчета дело обстоит так: плоскость качаний остается неизменной, а Земля поворачивается относительно нее, делая за сутки один оборот.

Таким образом, вращение плоскости качаний маятника Фуко дает непосредственное доказательство вращения Земли вокруг своей оси.

Если тело удаляется от оси вращения, то сила     направлена противоположно вращению и замедляет его.

Если тело приближается к оси вращения, то     направлена в сторону вращения.

С учетом всех сил инерции, уравнение Ньютона для неинерциальной системы отсчета примет вид

 – сила инерции, обусловленная поступательным движением неинерциальной системы отсчета;   – две силы инерции, обусловленные вращательным движением системы отсчета;   – ускорение тела относительно неинерциальной системы отсчета:

Соседние файлы в папке ЭКЗ