Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

БХ

.pdf
Скачиваний:
0
Добавлен:
06.02.2026
Размер:
1.22 Mб
Скачать

1.Биохимия и ее связь с другими науками Биохимия (биологическая химия) – наука, изучающая входящие в состав

организмов органические вещества, их структуру, распределение, превращения и физиологическую роль в организме.

Биохимия изучает все основные признаки живого организма:

Высокий уровень структурной организации или упорядоченность -предшественники клеточных компонентов, промежуточные соединения, биологические молекулы, макромолекулы или биополимеры, смешанные макромолекулы, надмолекулярные комплексы, органоиды, клетка. Способность к эффективному преобразованию и и использованию энергии обмен веществ с окружающей средой и саморегуляция химических превращений Самовоспроизведение или передача наследственной информации.

Статическая биохимия: изучение химического состава и структуры в-в. Динамическая биохимия: изучение обменных процессов в организме.

Функциональная биохимия: изучение биохимических процессов, лежащих в основе функций организма.

Биохимия как наука окончательно сформировалась в конце 19 века. В первой половине 20 века были открыты и охарактеризованы основные классы веществ, входящих в состав организмов, изучена природа основополагающих биохимических процессов: гликолиза, биологического окисления, достигнуты успехи в выявлении основных механизмов фотосинтеза, а

также сформулированы представления о сходстве основных метаболических превращений у различных групп организмов и выявлены их особенности.

Из всех других наук биохимия наиболее тесно связана с физиологией. Это обусловлено самой природой биологических процессов. В основе любого нарушения какой-либо физиологической функции лежит система изменений биохимических реакций. Нельзя глубоко до конца правильно понять природу любого физиологического процесса, не зная его биохимизма, так же как нельзя изучить биохимические реакции в отрыве от их физиологического значения. Биохимия взаимосвязана и с органической химией, но биохимики не только выделяют вещества из организма, осуществляют их синтез, как и химики-органики, но и изучают превращения данных соединений в общей системе обмена веществ живого организма, выясняют их роль в его жизнедеятельности.

2.История биохимии и вклад отечественных ученых в ее развитие.

Биохимия – сравнительно молодая наука, возникшая на рубеже 19 века. Однако корни ее уходят в глубокую древность. Естественное стремление людей понять причину болезни и найти лекарство против недуга пробудило интерес к процессам, протекающим в живых организмах. Представляется возможным в истории развития биохимических знаний и биохимии как науки выделить четыре периода.

1 период – с древних времен до эпохи Возрождения (15 век). Этот период практического использования биохимических процессов без знания их теоретических основ и первых, порой очень примитивных биохимических исследований.

Необходимость лечения болезней заставляла задумываться о превращениях веществ в организме, о причинах целебных свойств лекарственных растений. Использование растений в пищевых целях, для изготовления красок, тканей, дубителей также наталкивало на попытки понять свойства отдельных веществ растительного происхождения.

Крупнейший ученый и врач средневековья Абу Али-ибн-Сина (Авиценна) (980-1037) приводит в своем труде «Канон врачебной науки» классификацию химических веществ, применяемых в медицине, называет вещества, содержащиеся в «соках организма» и в моче.

2-й период в развитии биохимии, существующей еще как раздел физиологии, характеризуется усилением накопления биохимических знаний. Этот период ведет отсчет от начала эпохи Возрождения и заканчивается во второй половине 19 века, когда биохимия становится самостоятельной наукой.

Восемнадцатый век, ознаменованный гениальными трудами М.В. Ломоносова, характеризуется мощным и всесторонним развитием наук в России. Открытие М.В. Ломоносовым закона сохранения массы веществ нанесло сокрушительный удар по идеализму в естествознании.

м А. М. Бутлеров - теория строения органических соединений (1861). Он в своей теории утверждал, что атомы и молекулы существуют в определенных реальных взаимоотношениях, количественных и пространственных, которые и выражаются формулами.

А.М. Бутлеров сделал и другой ценный вклад в биохимию: он впервые синтезировал лабораторным путем сахар.

В 50-х годах 19-го века известный французский физиолог К. Бернар выделил из печени гликоген и показал, что он превращается в глюкозу, поступающую в кровоток.

3-й период в истории биохимии, начинающийся со второй половины 19 века, ознаменован выделением биохимии как самостоятельной науки из физиологии. Это связано с резким увеличением интенсивности и глубины биохимических исследований, объема получаемой информации, возросшим прикладным значением – использованием биохимии в промышленности, медицине, сельском хозяйстве.

Кэтому времени относятся работы одного из основоположников отечественной биохимии А. Я. Данилевского (1838-1923). Исследуя строение белков, он сформулировал ряд положений, которые в дальнейшем легли в основу полипептидной теории структуры беков. А.Я. Данилевским впервые высказана идея об обратимости действия ферментов и на основании этого осуществлен ферментативный синтез белковоподобных веществ (пластеины).

Большие заслуги в развитии отечественной биохимии принадлежат М.В. Ненцкому (1847-1901). В 1891 г. он создал первую в России биохимическую лабораторию при Институте экспериментальной медицины в Петербурге.

Кконцу прошлого столетия относится открытие Н.И. Луниным витаминов (1880), Д.И. Ивановским – вирусов (1892).

Кэтому же времени относятся исследования великого русского физиолога растений К. А. Тимирязева (1843-1920), в трудах которого затрагиваются многие биохимические вопросы фотосинтеза и минерального питания растений.

Ряд замечательных русских ученых, начавших научную деятельность до Октябрьской революции, проявили свой талант уже в годы Советской власти:

В.И. Палладин показал, что дыхание представляет собой систему ферментативных процессов, установил роль кислорода воды и реакций дегидрогенизации – отщепления водорода – при дыхании; С. П. Костычев исследовал химизм спиртового брожения и анаэробной фазы дыхания, нашел общность между ними; Д. Н. Прянишников заложил основы учения об азотном обмене растений, раскрыл роль аммиака и

аспарагина в этом процессе, создал основы советской агрохимии.

Начало 20 века характеризуется рядом фундаментальных исследований в области химии и за рубежом. В 1905 г. А. Гарден и В. Ионг выделили первый кофермент спиртового брожения -–

«озимазу», называемый в наше время НАД. В этом же году Ф. Кнооп открыл и исследовал -окисление жирных кислот. В 1933 г. Г. Кребс подробно изучил орнитиновый цикл образования мочевины, а 1937 г. датируется открытие им же цикла трикарбоновых кислот.

В1931 г. В.А. Энгельгардт показал, что фосфорилирование сопряжено в процессе дыхания с окислительными процессами, а в 1942 г. он же совместно с М.Н. Любимовой открыл АТФ-азную активность миозина и других сократительных белков.

В1938 г. А.Е. Браунштейн и М. Крицман впервые описали реакции трансаминирования.

40-е и особенно 50-е годы характеризуются использованием в биохимических исследованиях физических, физико-химических и математических методов, активным и успешным изучением основных жизненных процессов на молекулярном и надмолекулярном уровнях. 50-е годы, в которые была опубликована статья Д. Уотсона и Ф.

Краткая хронология основных открытий в биохимии этого периода.

1953 – Д. Уотсон и Ф. Крик предложили модель двойной спирали строения ДНК.

1953 – Ф. Сэнгер впервые расшифровал аминокислотную последовательность белка инсулина, состоящего из 51 аминокислотного остатка.

1955-1960 – А.Н. Белозерский и его сотрудники, исследовав нуклеотидный состав ДНК огромного числа представителей животных, растений и бактерий, охарактеризовали таксономическое и эволюционное значение соотношения отдельных азотистых оснований в ДНК.

1959, 1960 – А. С. Спирин и П. Доти установили вторичную и третичную структуру рибосомальной РНК. 1961 – М. Ниренберг расшифровал первую «букву» кода белкового синтеза – триплет ДНК, соответствующий фенилаланину.

1965-1967 – Р. Холли и независимо от него А.А. Баев определили нуклеотидную последовательность транспортных РНК.

1966 – П. Митчелл сформулировал хемиосмотическую теорию сопряжения окисления и фосфорилирования.

1971 – в совместной работе двух лабораторий, руководимых Ю.А. Овчинниковым и А. Е. Браунштейном, установлена первичная структура аспартатаминотрансферазы – белка из 412 аминокислот.

1977 – Ф. Сэнгер и сотрудники впервые полностью расшифровали первичную структуру молекулы ДНК.

Таким образом, биохимия как самостоятельная наука зародилась в 19 веке. Однако бурное развитие биохимии началось в 20 веке. В настоящее время биохимия представляет собой разветвленную область знания, охватывающую целый ряд разделов, выросших в самостоятельные дисциплины.

3.Задачи и перспективы развития биохимии.

Главной задачей биохимии является установление связи между молекулярной структурой и биологической функцией химических компонентов живых организмов. В зависимости от объекта исследования биохимию условно подразделяют на биохимию человека и животных, биохимию растений и биохимию микроорганизмов. Несмотря на биохимическое единство всего живого, существуют и коренные различия, как химического состава, так и обмена веществ в животных и растительных организмах Определение биохимии как науки одновременно характеризует и ее положение, значение среди других биологических наук. Изучая сущность жизни, самое главное в жизненных процессах - обмен веществ, биохимия, несомненно, должна быть отнесена к важнейшим биологическим наукам.

Успехи Биохимии в значительной мере определяют не только современный уровень медицины, но и ее возможный дальнейший прогресс. Одной из основных проблем биохимии и молекулярной биологии становится исправление дефектов генетического аппарата. Радикальная терапия наследственных болезней, связанных с мутационными изменениями тех или иных генов, ответственных за синтез определенных белков и ферментов, в принципе возможна лишь путем трансплантации синтезированных in vitro или выделенных из клеток аналогичных «здоровых» генов. Весьма заманчивой задачей является также овладение механизмом регуляции считки генетической информации, закодированной в ДНК, и расшифровки на молекулярном уровне механизма клеточной дифференцировки в онтогенезе. Проблема терапии ряда вирусных заболеваний, особенно лейкозов, вероятно, не будет решена до тех пор, пока не будет полностью ясен механизм взаимодействия вирусов (в частности, онкогенных) с инфицируемой клеткой. В этом направлении интенсивно ведутся работы во многих лабораториях мира. Выяснение картины жизни на молекулярном уровне позволит не только полностью понять происходящие в организме процессы, но и откроет новые возможности в создании эффективных лекарственных средств, в борьбе с преждевременным старением, развитием сердечно-сосудистых заболеваний, продлении жизни.

4.Строение аминокислот.

Аминокислоты – это строительные блоки макромолекул белков.

По строению они являются органическими карбоновыми кислотами, у которых, как минимум, один атом водорода замещен на аминогруппу.

Таким образом, в аминокислотах обязательно присутствует карбоксильная группа (СООН), аминогруппа (NH2), асимметричный атом углерода и боковая цепь (радикал R). Строением боковой цепи аминокислоты и отличаются друг от друга. Именно радикал придает аминокислотам большое разнообразие строения и свойств.

5.Современные представления о структуре белка.

Белки - сложные биополимеры, состоящие из аминокислот.

Все белки представляют собой полимеры, цепи которых собраны из фрагментов аминокислот. Аминокислоты – это органические соединения, содержащие в своем составе аминогруппу NH2 и органическую кислотную, т.е. карбоксильную, группу СООН. Из всего многообразия существующих аминокислот в образовании белков участвуют только такие, у которых между аминогруппой и карбоксильной группой – всего один углеродный атом. В общем виде аминокислоты, участвующие в образовании белков, могут быть представлены формулой: H2N–CH(R)–COOH.

Группа R, присоединенная к атому углерода (тому, который находится между амино- и карбоксильной группой), определяет различие между аминокислотами, образующими белки. Эта группа может состоять только из атомов углерода и водорода, но чаще содержит помимо С и Н различные функциональные (способные к дальнейшим превращениям) группы, например, HO-, H2N- и др. Свойства аминокислот разнообразны и они во многом определяют свойства белков.

По теории Э. Фишера аминокислоты присоединены друг к другу ковалентной амидной связью, которая возникает при взаимодействии α-карбоксильной группы одной аминокислоты с α- аминогруппой другой аминокислоты. При этом выделяется вода.

Пептидная связь является повторяющимся фрагментом полипептидной цепи, она имеет ряд особенностей, которые влияют не только на форму первичной структуры белка, но и на высшие формы организации его структуры.

6.Уровни структуры белка.

Первичная структура. Каждый вид белка обладает строгой спецификой аминокислотного состава. уникальностью числа аминокислот и их последовательности в полипептидной цепи, что определяется понятием первичная структура белка. Первичная структура белка предопределена генетическим кодом клетки. Она определяет пространственную структуру - конформацию белковой молекулы. Вторичная структураэто специфическая упорядоченная ориентация полипептидной цепи в пространстве, обусловленная свободным вращением вокруг ее связей, соединяющих -углеродные атомы. Если торсионные углы равны 45-60о , то вторичная структура белка представлена в виде А- спирали, если углы равны 120-135о, то образуется В-структура.

Третичная структура Полипептидная цепь складывается в пространстве в уникальную для каждого белка трехмерную конфигурацию, которая называется третичной структурой или конформацией белковой молекулы. Основные связи, стабилизирующие третичную структуру молекулы белка: водородные связи между боковыми цепями аминокислотных остатков; водородные связи между пептидными единицами; ионные связи; ван-дер-ваальсовы силы; гидрофобные взаимодействия.

При взаимодействии нескольких субъединиц происходит построение полиглобулярного белка с так называемой четвертичной структурой. Эта структура присуща ферментам и гемоглобину. Четвертичная структура стабилизируется всеми типами слабих связей и иногда ещё дисульфидными связями.

7.Физико-химические свойства белков.

Белки, как и аминокислоты, амфотерны благодаря наличию свободных NH2- и СООН-групп. Для них характерны все свойства кислот и оснований. В зависимости от реакции среды и соотношения кислых и основных аминокислот белки в растворе несут или отрицательный, или положительный заряд, перемещаясь к аноду или катоду. Это свойство используется при очистке белков методом электрофореза.

Белки обладают явно выраженными гидрофильными свойствами. Растворы белков имеют очень низкое осмотическое давление, высокую вязкость и незначительную способность к диффузии. Физико-химическое свойство денатурации представляет собой процесс разрушения вторичной, третичной структуры белковой молекулы под влиянием ряда факторов: температуры, действии спиртов, солей тяжелых металлов, кислот и других химических агентов.

Растворимость. Она зависит от аминокислотного состава белка и природы растворителя. Водорастворимые белки называются альбуминами, к ним относятся белки крови и молока. К

нерастворимым, или склеропротеинам, относятся, например, кератин (белок, из которого состоят волосы, шерсть млекопитающих, перья птиц и т. п.) и фиброин, который входит в состав шёлка и паутины.

Изоэлектрическая точка (pI) — кислотность среды (pH), при которой определённая молекула или поверхность не несёт электрического заряда.

8.Классификация белков.

Простые белки – это биополимеры, состоящие только из аминокислот. По форме они подразделяются на глобулярные и фибриллярные.

Глобулярные белки - они довольно сложно организованы, имеют третичную структуру, поэтому растворимы в воде. Из-за направленности заряда их делят на: основные - в этих белках содержится много основных аминокислот (аргинина и лизина), что позволяет им приобретать положительный заряд, облегчая растворимость. Кислые - это широко распространённые белки в основном, внеклеточных жидкостей. Наиболее богаты ими плазма крови, лимфа, ликвор, молоко и т.д. Из-за преобладания в них кислых аминокислот (глутамата и аспартата) растворы имеют кислый характер ( Альбумины, глобулины).

Фибриллярные белки - уровень организации этих белков включает лишь вторичную структуру, поэтому они не всегда растворимы в воде. Среди них выделяют: Растворимые в воде и её солевых растворах (миозин, актин). Нерастворимые в воде и водно-солевых растворах (Коллаген, эластин, кератин).

Сложные белки - фосфопротеины – это сложные белки, простетической группой которых является остаток фосфорной кислоты.

Нуклеопротеины – сложные белки, простетической группой которых являются нуклеотиды, и в первую очередь нуклеиновые кислоты – ДНК и РНК.

Хромопротеины («цветные белки») своей окраской обязаны простетической группе – пигменту. В зависимости от строения различают следующие подклассы: гемопротеины, флавопротеины, родопсин.

Металлопротеины – сложные белки, где роль небелкового компонента выполняют катионы металлов. Связь между ними ионная или координационная (донорно-акцепторная). Типичными представителями таких белков являются железосодержащие белки.

Гликопротеины, или гликоконъюгаты. В них простетическая группа представлена углеводными компонентами и связана с белком О-гликозидными (реже N-гликозидными) связями.

9.Понятие о нуклеиновых кислотах. История их открытия.

Нуклеиновые кислоты (НК) в клетке – это носители генетической информации. Они представлены в виде ДНК (дезоксирибонуклеиновая кислота) и РНК (рибонуклеиновая кислота). Это полимеры, построенные из отдельных нуклеотидов, в состав которых входят: гетероциклическое азотистое основание, остаток пентозы и остаток фосфорной кислоты.

Открытие нуклеиновых кислот принадлежит швейцарскому химику Ф. Мишеру, который продолжительное время изучал ядра лейкоцитов, входящих в состав гноя. Кропотливая работа замечательного исследователя увенчалась успехом.

В1869 г. Ф. Мишер обнаружил в лейкоцитах новое химическое соединение, которое назвал нуклеином. Дальнейшие исследования показали, что нуклеин представляет собой смесь нуклеиновых кислот.

Впоследствии нуклеиновые кислоты были обнаружены во всех растительных и животных клетках, бактериях и вирусах. Однако химическое строение нуклеиновых кислот и их основных компонентов устанавливалось с трудом.

Вприроде существуют два вида нуклеиновьтх кислот: дезоксирибонуклеиновая и рибонуклеиновая. Различие в названиях объясняется тем, что молекула ДНК содержит сахар дезоксирибозу, а молекула РНК — рибозу

10.Строение нуклеиновых кислот.

Нуклеиновые кислоты — биологические полимеры, мономерами которым служат нуклеотиды. Связи между нуклеотидами легко подвергаются гидролизу (распаду при реакции с водой). Каждый нуклеотид состоит из остатков углевода, фосфорной кислоты и азотистого основания. Углеводный

компонент представлен пентозами — рибозой (в РНК) или дезоксирибозой (в ДНК), у которой отсутствует кислород при втором атоме углерода.

Остаток фосфорной кислоты образует сложноэфирную связь с гидроксилом при 5-м атоме углерода в сахаре. Соединение нуклеотидов в полимер происходит путем образования фосфатом одного нуклеотида второй эфирной связи с гидроксилом при 3-м углероде соседнего нуклеотида. Такая связь получила название фосфодиэфирной. Кроме того, от первого атома углерода каждой пентозы отходит в бок азотистое основание. В этом нуклеиновые кислоты сходны с белками, в которых полимерная цепь образована пептидными группировками с отходящими от них боковыми радикалами аминокислот. Так же, как и у белков, в нуклеиновых кислотах два конца цепи неодинаковы. С одной стороны имеется не занятое связью пятое положение рибозы, этот конец называют 5’-концом. С противоположной стороны не занят связью третий гидроксил сахара, этот конец обозначают как 3’- конец. 5’-конец считается началом цепи, а 3’-конец — ее окончанием.

В одной молекуле нуклеиновой кислоты присутствует только один вид пентозы. Те молекулы, которые содержат рибозу, называют рибонуклеиновой кислотой, или сокращенно РНК. Нуклеиновую кислоту, содержащие дезоксирибозу, называют дезоксирибонуклеиновой кислотой, или ДНК.

11.Нуклеопротеиды Нуклеопротеиды, широко распространённые в природе комплексы нуклеиновых кислот с белками. В

зависимости от характера входящей в состав Н нуклеиновой кислоты различают дезоксирибонуклеопротеиды (ДНП) и рибонуклеопротеиды (РНП).

ДНП содержатся в ядрах всех клеток (составляют основу ядерного вещества — хроматина) и в головках сперматозоидов. Белковым компонентом ДНП служат преимущественно белки основного характера

гистоны; в головках сперматозоидов некоторых животных (главным образом птиц и рыб) присутствуют белки с более мелкими молекулами — протамины. Гистоны и протамины при нейтральных рН несут большой положительный заряд, что обеспечивает возможность сильного электростатического взаимодействия с отрицательно заряженными нуклеиновыми кислотами. Полагают, что белки в ДНП располагаются в желобках двойной спирали ДНК, стабилизируя её структуру и выполняя определённые биологической функции (регуляция матричной активности ДНК). Из РНП состоят многие вирусы, информосомы, рибосомы.

12.Общая характеристика углеводов.

Углеводы — это природные органические соединения, содержащиеся во всех клетках живых организмов и выполняющие важные функции. Молекулы углеводов состоят из атомов трёх элементов

углерода, водорода и кислорода. Состав большинства углеводов можно выразить формулой: C n ( H

2 O ) m .

Углеводы делятся на три основных класса: моносахариды, олигосахариды и полисахариды. Моносахариды или простые сахара не подвергаются гидролизу и получить из них более простые углеводы невозможно. К моносахаридам относятся: рибоза, дезоксирибоза, глюкоза, фруктоза, галактоза и другие.

Гидролиз - Химическая реакция , в которой при взаимодействии с водой происходит разложение исходного вещества с образованием новых соединений.

Олигосахариды состоят из нескольких моносахаридов, соединенных ковалентными связями. При гидролизе они распадаются на входящие в них моносахариды. Примером олигосахаридов могут служить дисахариды, состоящие из двух молекул моносахаридов. Наиболее распространенные дисахариды сахароза (пищевой или тростниковый сахар), состоящий из остатков глюкозы и фруктозы, лактоза(молочный сахар), состоящий из остатков глюкозы и галактозы.

Полисахариды представляют собой длинные неразветвленные цепи. Включающие сотни и тысячи моносахаридных остатков. Наиболее известные из них – крахмал, целлюлоза, гликоген - состоят из остатков глюкозы.

Функции углеводов в организме весьма разнообразны : - Энергетическая.

- Структурная функция (входят в состав клеточных структур). - Защитная (синтез иммунных тел в ответ на антигены).

- Антисвертывающая (гепарин).

- Гомеостатическая (поддержание водно-солевого обмена)

- Механическая ( входят в состав соединительных и опорных тканей).

13.Строение углеводов.

В состав углеводов входят углерод, водород, кислород. Общая формула – Cn(H2O)m. Углерод образует с кислородом карбонильные (=С=O), а водород – гидроксильные (-ОН) группы. Соотношение водорода и кислорода в одной молекуле (структурной единице) такое же, как в воде – 2:1.

Простые углеводы, как правило, представляют собой многоатомные спирты, содержащие ОН-группу у каждого атома углерода, кроме одного, несущего альдегидную или кетогруппу. Это видно на примере глюкозы, которая имеет 6 атомов углерода, при этом первый — в составе альдегидной группы, а остальные несут ОН-группы.

Наиболее распространенными моносахаридами являются глюкоза, или виноградный сахар, и фруктоза, или фруктовый сахар.

Пентозы и гексозы способны замыкаться в 5- или 6-членные кольца, переходя в циклическую форму. Длина углеродной цепи в моносахаридах, встречающихся в живых организмах, колеблется от 3 до 8 атомов, хотя большинство из них содержит 3, 5 или 6 атомов углерода. В зависимости от количества атомов углерода моносахариды разделяют на триозы, тетрозы, пентозы, гексозы, гептозы, октозы.

Моносахариды хорошо растворимы в воде, образуют кристаллы и имеют сладкий вкус.

Дисахариды широко распространены в живой природе.

Сахароза представляющая собой соединение глюкозы и фруктозы, играет важную роль в растениях, где она служит транспортируемой формой углеводов во флоэме.

Другой важный дисахарид — лактоза (или молочный сахар) содержащаяся в молоке млекопитающих. Она состоит из остатков глюкозы и галактозы.

Мальтоза, образованная двумя остатками глюкозы, образуется при расщеплении крахмала и гликогена в пищеварительном тракте животных или при прорастании семян растений. Полисахариды нерастворимы в воде и не имеют сладкого вкуса. Так как к одному остатку моносахарида может быть присоединено несколько других остатков, полисахариды могут иметь

разветвленную структуру. В живых организмах наиболее широко распространены полимеры глюкозы

— крахмал, гликоген и целлюлоза.

Одними из важнейших полисахаридов являются полимеры из остатков глюкозы — крахмал, гликоген и целлюлоза.

1)Крахмал состоит только из остатков глюкозы. В состав крахмала входят два компонента — линейный компонент, называемый амилозой, и разветвленный — амилопектин. Крахмал служит основным запасным веществом у растений.

2)У животных и грибов резервную (запасающую) функцию выполняет гликоген — полисахарид, похожий на амилопектин, но отличающийся большей разветвленностью. Крахмал и гликоген накапливаются в клетках в виде гранул.

3)Целлюлоза представляет собой линейный неветвящийся полимер, содержащий примерно 10 000 остатков глюкозы. Молекулы целлюлозы располагаются параллельно друг другу и образуют между собой множество водородных связей. Такое строение придает целлюлозе высокую механическую прочность. Целлюзоза встречается в основном у растений, где составляет основу клеточных стенок. Помимо растений целлюлоза обнаружена у оомицетов (группа, которую обычно относили к грибам) и у асцидий. Целлюлоза — самое распространенное на земле органическое вещество.

4)Близок по строению к целлюлозе хитин. Хитин служит основой клеточных стенок грибов и образует наружный скелет у членистоногих.

5)Клеточную стенку бактерий образует соединение муреин (от лат. murum — стена). Оно состоит из полисахаридных цепочек, сшитых между собой пептидными мостиками. Поэтому его еще называют пептидогликаном (гликаны — другое название сложных углеводов).

14.Классификация углеводов.

15.Свойства углеводов.

Физические свойства

Моносахариды и олигосахариды имеют схожие физические свойства: -кристаллическое строение; -сладкий вкус; -растворимость в воде; -прозрачность;

-нейтральная pH в растворе;

-низкие температуры плавления и кипения.

Полисахариды – более сложные вещества. Они нерастворимы и не имеют сладкого привкуса. Целлюлоза – разновидность полисахарида, входящая в состав клеточных стенок растений. Аналогичный целлюлозе хитин входит в состав грибов и панцирей членистоногих. Крахмал накапливается в растениях и распадается на простые углеводы, которые являются источником энергии. В животных клетках резервную функцию выполняет гликоген.

Химические свойства.

В зависимости от структуры каждому углеводу характерны особые химические свойства. Моносахариды, в частности глюкоза, подвергаются многоступенчатому окислению (в отсутствии и присутствии кислорода). В результате полного окисления образуется углекислый газ и вода. В отсутствии кислорода под действием ферментов происходит брожение. Иначе с кислородом взаимодействуют полисахариды, сгорая до углекислого газа и воды. Олигосахариды и полисахариды разлагаются до моносахаридов при гидролизе.

16.Общая характеристика липидов.

Липидами - называют жиры и жироподобные вещества. Содержатся они во всех живых клетках и выполняют ряд жизненно важных функций: структурную, метаболическую, энергетическую, защитную и др. Не растворяются или слабо растворяются в воде, хорошо растворяются в органических растворителях. Большинство из них являются производными спиртов, высших жирных кислот или альдегидов.

Благодаря неполярным углеродным цепям в строении, они могут быть поверхностно-активными, участвовать в проницаемости клеточных мембран, легко растворяться в органических растворителях, быть растворителями для витаминов и других соединений.

Различают две группы липидов: простые и сложные. Молекулы простого липида образуются из остатков спиртов (глицерина, гликолей, высших или циклических) и высших жирных кислот. Это нейтральные жиры, диольные липиды, стериды и воски. Молекулы сложного липида состоят из остатков спиртов, высших жирных кислот и других веществ. К сложным липидам относятся фосфатиды, гликолипиды, сульфатиды. Часто к липидам относят моно- и диглицериды, стерины, каротины и другие близкие к ним вещества.

17.Классификация липидов.

Классификация липидов сложна, так как в класс липидов входят вещества весьма разнообразные по своему строению. Их объединяет только одно свойство – гидрофобность.

По отношению к гидролизу в щелочной среде все липиды подразделяют на две большие группы: омыляемые и неомыляемые.

Среди неомыляемых определена большая группа стероидов, в состав которой входят холестерол и его производные: стероидные гормоны, стероидные витамины, желчные кислоты.

Среди омыляемых липидов существуют простые липиды, т.е. состоящие только из спирта и жирных кислот – воска, триацилглицеролы (триглицериды), эфиры холестерола, и сложные липиды, включающие, кроме спирта и жирных кислот, вещества иного строения – фосфолипиды, гликолипиды, сфинголипиды.

18.Свойства и строение липидов.

Молекулы простых липидов состоят из спирта, жирных кислот, сложные — из спирта, высокомолекулярных жирных кислот, возможны остатки фосфорной кислоты, углеводов, азотистых оснований и др. Наиболее простыми липидами (жирами) являются эфиры трехатомного спирта глицерина и жирных кислот, которые называются триацилглицеридами. Большинство природных триацилглицеридов содержат две или более различающиеся жирные кислоты. В организме запасенные жиры откладываются в цитоплазме в виде капель; особенно много таких капель в клетках жировой ткани. Окисление жиров до углекислого газа и воды дает большое количество энергии (38,9 кДж/г); этим обусловлена их энергетическая функция.

19.История учения о ферментах.

История ферментов уходит в далекое прошлое. Спиртовое и молочнокислое брожение, применение заквасок при приготовлении хлеба, использование сычуга для изготовления сыров и др.- все эти ферментативные процессы хорошо известны с незапамятных времен.

Одними из первых исследователей, занимавшихся изучением ферментативных процессов, были Реомюр и Спалланцани. В своих опытах по перевариванию мяса в желудке птиц они впервые поставили вопрос о необходимости изучения химического состава пищеварительных соков. Русский ученый К. С. Кирхгоф (1814) показал, что в вытяжке из проросшего ячменя содержится вещество, которое вызывает превращение крахмала в сахар. Таким образом, Кирхгофом впервые был получен ферментный препарат амилазы и эту дату мы с полным правом можем считать датой возникновения ферментологии. Изучая процессы брожения, голландский ученый Ван Гельмонт впервые ввел в науку термин "ферменты" (от лат. fermentum - закваска). Слово "энзим" происходит от древнегреческого слова "эн зюме", что означает "в дрожжах". К середине 50-х годов XIX века понятие о ферментах как о биологических катализаторах прочно утвердилось в науке. К этому времени и относится большой спор двух крупнейших ученых мира Луи Пастера и Ю. Либиха о месте локализации ферментов в клетке - спор, который по своему существу явился борьбой двух мировоззрений в науке - идеализма и материализма и затормозил развитие учения о ферментах без малого на 50 лет.

20.Химическая природа и общие свойства ферментов. Свойства ферментов

1.Влияние на скорость химической реакции: ферменты увеличивают скорость химической реакции, но сами при этом не расходуются.

Скорость реакции – это изменение концентрации компонентов реакции в единицу времени. Если она идет в прямом направлении, то пропорциональна концентрации реагирующих веществ, если в обратном – то пропорциональна концентрации продуктов реакции. Отношение скоростей прямой и обратной реакций называется константой равновесия. Ферменты не могут изменять величины константы равновесия, но состояние равновесия в присутствии ферментов наступает быстрее.

2.Специфичность действия ферментов. В клетках организма протекает 2-3 тыс. реакций, каждая из которые катализирутся определенным ферментом. Специфичность действия фермента – это способность ускорять протекание одной определенной реакции, не влияя на скорость остальных, даже очень похожих.

Различают:

Абсолютную – когда Ф катализирует только одну определенную реакцию (аргиназа – расщепление аргинина)

Относительную (групповую спец) – Ф катализирует определенный класс реакций (напр. гидролитическое расщепление) или реакции при участии определенного класса веществ. Специфичность ферментов обусловлена их уникальной аминокислотной последовательностью, от которой зависит конформация активного центра, взаимодействующего с компонентами реакции. Вещество, химическое превращение которого катализируется ферментом носит название субстрат (S).

3.Активность ферментов – способность в разной степени ускорять скорость реакции.

Ферменты (от лат. fermentum — закваска) (энзимы) — специфические вещества белковой природы, присутствующие в тканях и клетках всех живых организмов и способные во много раз ускорять протекающие в них химические реакции.

Ферменты имеют белковую природу и представляют собой либо простые белки, целиком построенные из полипептидных цепей и распадающиеся при гидролизе только на аминокислоты (например, гидролитические ферменты трипсин и пепсин, уреаза), либо сложные белки, содержащие наряду с белковой частью (апоферментом) небелковый компонент (кофермент или простетическую группу).

21.Механизм действия ферментов.

Механизм действия простого и сложного ферментов одинаков, так как активные центры в их молекулах выполняют сходные функции. Основы механизма действия ферментов были изучены в начале XX в. В 1902 г. английский химик А.Браун высказал предположение о том, что фермент, воздействуя на субстрат, должен образовать с ним промежуточный фермент — субстратный комплекс. Одновременно и независимо от А. Брауна это же предположение высказал французский ученый В. Анри. В 1913 г. Л. Михэлис и М. Ментэн подтвердили и развили представления о механизме действия ферментов.

На первой стадии ферментативного катализа происходит образование фермент-субстратного комплекса, где фермент и субстрат могут быть связаны ионной, ковалентной или иной связью. Образование комплекса E-S происходит практически мгновенно.

На второй стадии субстрат под воздействием связанного с ним фермента видоизменяется и становится более доступным для соответствующей химической реакции. Эта стадия определяет скорость всего процесса. На этих стадиях ферментативного катализа происходят неоднократные изменения третичной структуры белка фермента, приводящие к последовательному сближениюс субстратом и ориентации в пространстве тех активных групп, которые взаимодействуют друг с другом на различных этапах преобразования субстратов На третьей стадии происходит химическая реакция, в результате которой образуется комплекс продукта реакции с ферментом.

Заключительным процессом является высвобождение продукта реакции из комплекса.

В организме превращение веществ до конечных продуктов происходит в несколько этапов, каждый из которых катализируется отдельным ферментом. Сумма энергии активации промежуточных реакций ниже энергии активации, необходимой для одновременного расщепления субстрата.