Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
химия - 2 часть.pptx
Скачиваний:
0
Добавлен:
04.02.2026
Размер:
1.75 Mб
Скачать

Металлы реагируют с простыми веществами - неметаллами: со фтором – почти все металлы, продукты реакции называют фториды; хлором – почти все, продукты реакции называют хлориды; кислородом – многие металлы, продукты реакции называют оксиды; серой – многие при нагревании, продукты называют сульфидами; водородом, азотом – щелочные и щелочно - земельные металлы, продукты реакции гидриды и нитриды соответственно.

. С водой взаимодействуют, вытесняя водород из воды, только те металлы, значение электродных потенциалов которых значительно меньше, чем у воды (–0,41 В).

2Li + 2H2O ® 2LiOH + H2

Металлы, расположенные между магнием и свинцом, пассивируют протекание реакции с образованием защитной оксидной пленки.

3.Металлы, стоящие в ряду электродных потенциалов левее водорода, взаимодействуют с хлороводородной кислотой. Окислителем в хлороводородной кислоте является ион водорода H+: Fe + 2HCl ® FeCl2 + H2

4.Металлы взаимодействуют с серной кислотой. В разбавленной, так же как в хлороводородной кислоте, окислителем является ион водорода:

Ме + Н2SO4 (разб.) ® MeSO4 + H2

В концентрированной серной кислоте в роли окислителя выступает атом серы . В этом случае становится возможным окисление некоторых благородных металлов.

3Cu + 4H2SO4 ® 3CuSO4 + S¯ + 4H2O

Более сильным окислителем, чем серная кислота, является азотная. В разбавленной азотной кислоте окислителем выступает атом азота . Продуктами восстановления азота могут являться NH4NO3, N2, N2O, NO.

Концентрированная азотная кислота обычно восстанавливается до NO2.

5. Действие растворов щелочей возможно только на «амфотерные» металлы Be, Al, Zn, Sn, Pb. Причем реакция протекает в две стадии: реакция металла с водой с образованием гидроксида и водорода, реакция гидроксида металла со щелочью.

Коррозия – самопроизвольный окислительно-восстановительный процесс разрушения металла при взаимодействии с окружающей средой. Среда, в которой происходит разрушение металла, называется коррозионной, а образующиеся в результате коррозии химические соединения – продуктами коррозии. Продукты – оксиды, сульфиды, карбонаты, сульфаты и т.д. – представляют собой прочные соединения, содержащие металлы в ионном виде, которые обладают существенно иными физическими свойствами. По механизму протекания различают два основных вида коррозии: химическая и электрохимическая.

Химическая коррозия подчиняется основным законам химической кинетики гетерогенных реакций. Химическая коррозия подразделяется на газовую – окисление металла кислородом или другими газами (SO2,

CO2, H2 и пр.) при высокой температуре и полном отсутствии влаги на

поверхности металлического изделия и коррозию в неэлектролитах – разрушение металла в жидких или газообразных агрессивных средах, обладающих малой электропроводностью.

лектрохимическая коррозия - это окисление металлов в электропроводных средах, сопровождающееся образованием и протеканием электрического тока. С электрохимическим механизмом протекают следующие виды процесса коррозии: 1) коррозия в электролитах; 2) почвенная коррозия; 3) электрокоррозия – разрушение подземного металлического сооружения,

вызванное блуждающими токами; 4) атмосферная коррозия – разрушение металлов в атмосфере воздуха или среде любого влажного газа; 5) контактная коррозия – коррозия, вызванная электрическими контактами двух металлов, имеющих различный электрохимический потенциал.

При электрохимической коррозии на металле протекают две реакции: анодная - ионизация атомов металла с переходом ионов металла в раствор электролита: Me → Men+ + nē (окисление 1);

катодная: Ох + nē → Red (восстановление 2).

Механизм электрохимической коррозии связан с возникновением и работой на поверхности металла во влажной среде микрогальваноэлементов. По характеру катодного процесса различают коррозию с водородной и кислородной деполяризацией. В водной среде окислителем являются катионы водорода (Н+) и растворённый в электролите кислород. Катодный процесс с водородной деполяризацией осуществляется в соответствии с уравнениями:

) 2H+ + 2ē H2 (pH < 7); б) 2H2O + 2ē H2 + 2OH- (pH ≥ 7);

катодный процесс с кислородной деполяризацией протекает в соответствии: в)O2+4H++4ē 2H2O (pH < 7); г) O2 + 2H2O + 4ē 4OH- (pH ≥ 7).

Суммарные уравнения: 1. 2Me + 2nH2O → 2Men+ + nH2 + 2nOH- (pH ≥ 7) 2. 4Me + nO2 + 2nH2O → 4Men+ + 4nOH- (pH ≥ 7)

К основным методам защиты от коррозии относятся:

1. Защитные покрытия металлов.Покрытия подразделяются на металлические, неметаллические и образованные в результате химической или электрохимической обработки поверхности металла. Основная цель защитных покрытий – изолировать металл от воздействия агрессивной среды. Для металлических покрытий обычно применяют металлы, которые образуют на своей поверхности защитные пленки (Al, Cr, Zn, Cd, Ni и др.). Металлические покрытия подразделяют

на катодные (металл покрытия менее активный) и анодные (металл покрытия более активный). К неметаллическим покрытиям относятся покрытия красками, лаками, эмалями, минеральными маслами, битумом; металлокерамические и резиновые покрытия. К химическим покрытиям относятся искусственно создаваемые защитные пленки различного состава (оксидные, фосфатные, хроматные, сульфидные и пр.), вызывающие пассивирование поверхности металлов.

Применение коррозионно-стойких материалов.

3.Обработка коррозионной среды реагентами.В роли реагентов, замедляющих коррозию, выступают ингибиторы. В зависимости от природы металла и окружающей среды применяются различные ингибиторы.

4.Электрохимические методы защиты металлических изделий подразделяются напротекторную, катодную, электродренажную и анодную защиты. Протекторная защита заключается в присоединении к защищаемому сооружению более активного металла,который выполняет роль протектора и разрушается, а металлическая конструкция (катод) сохраняется. Протектор периодически возобновляется в связи с его растворением. При катодной защите защищаемая конструкция присоединяется к отрицательному полюсу источника электрического тока. При электродренажной защите блуждающие токи с защищаемого трубопровода отводятся с помощью электродренажной установки к рельсовой сети (источнику блуждающих токов). Смысл анодной защиты заключается в создании на поверхности защищаемой конструкции пассивирующей пленки с помощью анодной поляризации от внешнего источника постоянного тока, то есть переводом металла в устойчивое пассивное состояние.

ром. Внешняя электронная конфигурация атома хрома 3d54s1. В соединениях обычно проявляет степени окисления +2, +3, +6, среди них наиболее устойчивы Сr3+. Нахождение в природе.Хром – довольно распространенный элемент на Земле. Его кларк (среднее содержание в земной коре) составляет 8,3·10–3%. Хром никогда не встречается в свободном состоянии. В хромовых рудах практическое значение имеет только хромит FeCr2O4.

Физические свойства. Хром - твердый, тяжелый, тугоплавкий металл. Плотность 7190

кг/м3; tпл 1890 °С; tкип 2480 °С.

Химические свойства. Хром химически малоактивен. При обычных условиях устойчив к кислороду и влаге, но соединяется с фтором, образуя CrF3. Выше 600°С

взаимодействует с парами воды, давая Сr2О3; с азотом - Cr2N, CrN; с углеродом - Сr3С2; с серой - Cr2S3. Со многими металлами хром дает сплавы. Хром загорается в кислороде при 2000°С с образованием темно-зеленого оксида хрома (III) Сr2О3. Помимо оксида (III), известны других соединения с кислородом, например CrO, СrО3,

получаемые косвенным путем. Хром легко реагирует с разбавленными растворами соляной и серной кислот с образованием хлорида и сульфата хрома и выделением водорода; «царская водка» и азотная кислота пассивируют хром. С увеличением степени окисления возрастают кислотные и окислительные свойства хрома.

Железо. Конфигурация внешней электронной оболочки атома 3d64s2. Железо проявляет переменную валентность (наиболее устойчивые степени окисления +2 и +3).

Нахождение в природе. По распространенности в земной коре занимает второе место среди металлов. Для извлечения железа используются в основном такие руды, как гематит (Fe2O3), магнитные железняки (Fe3О4),

бурые железняки (НFeO2· nH2O), а также шпатовые железняки (FeСО3). Физические свойства. Плотность (20°C) 7874 кг/м3, tпл 1539°С, tкип 3200°С.

Химические свойства. С кислородом железо образует оксид (II) FeO, оксид (III) Fe2O3 и оксид (II,III) Fe3O4 (соединение FeO c Fe2O3, имеющее структуру

шпинели). Во влажном воздухе при обычной температуре железо покрывается рыхлой ржавчиной (Fe2O3·nH2O). Вследствие своей пористости

ржавчина не препятствует доступу кислорода и влаги к металлу и поэтому не предохраняет его от дальнейшего окисления. При нагревании в водяном паре железо окисляется с образованием Fe3O4 (ниже 570 °С) или FeO (выше

570 °С) и выделением водорода.