- •Электрохимические процессы Электролиз солей и расплавов
- •Рассмотрим процесс электролиза расплава хлорида натрия. В расплаве идет процесс термической диссоциации:
- •главное, что вы должны помнить: в процессе
- •Для определения продуктов электролиза водных растворов электролитов существуют следующие правила.
- •2. Процесс на аноде зависит от материала анода и от природы аниона:
- •Процессы, происходящие на катоде
- •Активным называется анод, материал которого может окисляться в ходе электролиза. В качестве материалов
- •Анод нерастворимый (например, графитовый). В растворе идет процесс электролитической диссоциации:
- •Суммарное молекулярное уравнение:
- •Количественные характеристики электролиза * выражаются двумя законами Фарадея:
- •Величина называется электрохимическим эквивалентом вещества. Если продолжительность электролиза измерять в часах, то число
- •если металлическую пластинку (электрод) опустить в воду, то катионы металла на ее поверхности
- •Гальванический элемент
- •если удалять из металла избыточные электроны, то равновесие (1) будет смещено вправо. Такие
- •Способность отдавать ионы в раствор у Zn больше, чем у Cu, поэтому концентрация
- •Электрохимическая цепь для медно-цинкового элемента имеет вид:
- •ДВОЙНОЙ ЭЛЕКТРИЧЕСКИЙ СЛОЙ
- •Первые представления о двойном электрическом слое были развиты Гельмгольцем, который считал, что и
- •Так как методов прямого измерения электродных потенциалов не существует, то возможно только измерение
- •Равновесный потенциал зависит:
- •Стандартным электродным потенциалом металла называют его электродный потенциал, возникающий при погружении металла в
- •Термодинамика гальванического элемента
- •Комплексные соединения
- •Номенклатура комплексных соединений
- •Соединения с комплексными анионами. Вначале называют комплексный анион в именительном падеже: перечисляют лиганды,
- •Реакции образования комплексных соединений
- •Образование комплексных солей.
- •Образование комплексных солей.
- •Реакции разрушения комплексных соединений
- •Нагревания некоторых комплексных соединений:
- •Диссоциация комплексных соединений
- •Величина, обратная Кн, называется константой устойчивости:
- •Из 110 известных к настоящему времени элементов только 22 относятся к неметаллам, большинство
- •Металлам присущи характерные признаки, проявляющиеся, как правило, одновременно:
- •Металлам присущи характерные признаки, проявляющиеся, как правило, одновременно:
- •Металлы реагируют с простыми веществами - неметаллами: со фтором – почти все металлы,
- •. С водой взаимодействуют, вытесняя водород из воды, только те металлы, значение электродных
- •Более сильным окислителем, чем серная кислота, является азотная. В разбавленной азотной кислоте окислителем
- •Коррозия – самопроизвольный окислительно-восстановительный процесс разрушения металла при взаимодействии с окружающей средой. Среда,
- •лектрохимическая коррозия - это окисление металлов в электропроводных средах, сопровождающееся образованием и протеканием
- •Механизм электрохимической коррозии связан с возникновением и работой на поверхности металла во влажной
- •К основным методам защиты от коррозии относятся:
- •Применение коррозионно-стойких материалов.
- •ром. Внешняя электронная конфигурация атома хрома 3d54s1. В соединениях обычно проявляет степени окисления
- •Железо. Конфигурация внешней электронной оболочки атома 3d64s2. Железо проявляет переменную валентность (наиболее устойчивые
- •Железо легко реагирует с галогенами и галогеноводородами, давая соли, например хлориды FeCl2 и
- •Галогены
- •Атомы галогенов содержат на внешнем энергетическом уровне 1 неспаренный электрон и три неподеленные
- •Галоген
- •В лаборатории хлор получают взаимодействием концентрированной соляной кислоты с сильными окислителями.
- •2. Получение фтора.
- •Химические свойства галогенов
- •1.4. При взаимодействии с металлами галогены проявляют свойства окислителей, образуя галогениды.
- •1.5. Водород горит в атмосфере фтора:
- •2. Со сложными веществами галогены реагируют, также проявляя преимущественно окислительные свойства. Галогены охотно
- •образованием различных солей. Фтор окисляет щелочи. Например, хлор реагирует с холодным раствором гидроксидом
- •апример, фтор окисляет хлор с образованием фторида хлора (I):
- •Галогеноводороды Строение молекулы и физические свойства
- •Химические свойства галогеноводородов 1. В водном растворе галогеноводороды проявляют кислотные
- •Как типичные минеральные кислоты, водные растворы галогеноводородов реагируют с металлами, расположенными в ряду
- •ачественная реакция на галогенид-ионы – взаимодействие с растворимыми солями серебра.
- •4. Восстановительные свойства галогеноводородов усиливаются в ряду HF – HCl – HBr –
- •Например, бромоводород окисляется концентрированной серной кислотой:
- •Йодоводород легко окисляется соединениями азота, например, оксидом азота (IV):
- •Способы получения галогенидов 1. Галогениды металлов получают при взаимодействии галогенов с
- •4. Галогениды металлов можно получить при взаимодействии оснований и амфотерных гидроксидов с галогеноводородами.
- •Галогениды металлов проявляют восстановительные свойства. Хлориды окисляются только сильными окислителями, а вот йодиды
- •Более активные галогены вытесняют менее активные из солей.
- •Хлорноватистая кислота и ее соли
- •3. Ярко выражены окислительные свойства хлорноватистой кислоты за счет атома хлора в степени
- •Гипохлориты вступают в обменные реакции с другими солями, если образуется слабый электролит.
- •лорноватая кислота и ее соли
- •1. Хлораты – сильные окислители.
- •Хлорная кислота и ее соли
- •Водород
- •типичные
- •Способы получения
- •Химические свойства
- •2. Водород взаимодействует со сложными веществами: 2.1. Восстанавливает металлы из основных и
- •Применение водорода
- •Водородные соединения металлов
- •Химические свойства
- •Кислород
- •Получение кислорода 1. Промышленный способ — перегонка жидкого воздуха и электролиз воды:
- •Кислород легко реагирует с щелочными и щелочноземельными металлами:
- •С неметаллами (серой, графитом, водородом, фосфором и др.) кислород реагирует при нагревании:
- •Озон
- •Сера и ее соединения
- •Способы получения серы
- •Химические свойства серы
- •2. Со сложными веществами сера реагирует, также проявляя окислительные и восстановительные свойства.
- •2.2. При растворении в щелочах сера диспропорционирует до сульфита и сульфида. Например, сера
- •Сероводород
- •Способы получения сероводорода
- •Химические свойства сероводорода
- •Под действием избытка хлора в водном растворе сероводород окисляется до серной кислоты:
- •4. Сероводород в растворе реагирует с растворимыми солями тяжелых металлов: меди, серебра, свинца,
- •Способы получения сульфидов
- •Химические свойства сульфидов
- •3. Нерастворимые сульфиды растворяются в концентрированной азотной кислоте или концентрированной серной кислоте. При
- •6. Реакции сульфидов с растворимыми солями свинца, серебра, меди используют как качественные на
- •Оксид серы (IV)
- •химические свойства оксида серы (IV):
- •3. Наиболее ярко выражены восстановительные свойства SO2. При
- •4. В присутствии сильных восстановителей SO2 способен проявлять
- •Оксид серы (VI)
- •Химические свойства оксида серы (VI)
- •Серная кислота H2SO4
- •Способы получения
- •Назначение и уравненяи реакций
- •Химические свойства
- •Серная кислота вытесняет более слабые из солей в растворе (карбонаты, сульфиды Также серная
- •5. Разбавленная серная кислота взаимодействует с металлами, которые расположены в ряду активности металлов
- •При взаимодействии с неактивными металлами концентрированная серная кислота восстанавливается до сернистого газа:
- •При этом образуется белый кристаллический осадок сульфата бария:
- •Химические свойства
- •Сульфаты таких металлов, как медь Cu, алюминий Al, цинк Zn, хром Cr, железо
- •Азот
- •Способы получения азота
- •Химические свойства азота
- •1.4. Азот реагирует с активными металлами: с литием при комнатной температуре, кальцием, натрием
- •Способы получения аммиака В лаборатории аммиак получают при взаимодействии солей аммония с щелочами.
- •В промышленности аммиак получают с помощью процесса Габера: прямым синтезом из водорода и
- •среда водного раствора аммиака – щелочная. Однако аммиак – слабое основание. При 20
- •3. В качестве основания, водный раствор аммиака реагирует с растворами солей тяжелых металлов,
- •7. За счет азота в степени окисления -3 аммиак проявляет восстановительные свойства. Может
- •Способы получения солей аммония
- •химические свойства солей аммония
- •3. Соли аммония подвергаются гидролизу по катиону, т.к. гидроксид аммония — слабое основание:
- •Оксиды азота
- •Оксид азота (I)
- •химические свойства оксида азота (I):
- •Оксид азота (II)
- •Химические свойства.
- •оксид азота (III)
- •Оксид азота (IV)
- •Химические свойства.
- •3. Оксид азота (IV) – сильный окислитель. В атмосфере оксида азота (IV) горят
- •Оксид азота (V)
- •Химические свойства оксида азота (V).
- •Азотная кислота HNO3 – это сильная одноосновная кислота-
- •Способы получения
- •Химические свойства
- •5. Азотная кислота активно взаимодействует с металлами. При этом никогда не выделяется водород!
- •Концентрированная азотная кислота взаимодействует с неактивными металлами и металлами средней активности (в ряду
- •Очень разбавленная азотная кислота реагирует с металлами с образованием нитрата аммония:
- •7. Концентрированная азотная кислота окисляет сложные вещества (в которых есть элементы в отрицательной,
- •Азотистая кислота
- •Соли азотистой кислоты — нитриты
- •В кислой среде нитриты выступают в качестве окислителей. При окислении йодидов или соединений
- •Углерод
- •химические свойства
- •1.4.С азотом углерод реагирует при действии электрического разряда, образуя дициан:
- •2. Углерод взаимодействует со сложными веществами:
- •образуются оксид серы (IV), оксид углерода (IV) и вода:
- •Способы получения В лаборатории угарный газ можно получить действием
- •Химические свойства
- •4.Под давлением оксид углерода (II) реагирует с щелочами. При этом образуется формиат –
- •Способы получения В лаборатории углекислый газ можно получить разными способами:
- •3. Углекислый газ также образуется при термическом разложении нерастворимых карбонатов и при разложении
- •Химические свойства
- •3. Углекислый газ взаимодействует с карбонатами. При пропускании СО2 через раствор карбонатов образуются
- •Карбонаты и гидрокарбонаты
- •Гидролиз карбонатов и гидрокарбонатов
- •Щелочные металлы
- •Химические свойства 1. Щелочные металлы — сильные восстановители. Поэтому они
- •1.5. Щелочные металлы реагируют с углеродом с образованием карбидов, преимущественно ацетиленидов:
- •2.2.Щелочные металлы взаимодействуют с минеральными кислотами (с соляной, фосфорной и разбавленной серной кислотой)
- •С разбавленной азотной кислотой образуется молекулярный азот:
- •Метанол с натрием образуют метилат натрия и водород:
- •Оксиды щелочных металлов Способы получения
- •Химические свойства Оксиды щелочных металлов — типичные основные оксиды. Вступают в
- •Пероксиды щелочных металлов Химические свойства
- •При взаимодействии с минеральными кислотами на холоде пероксиды вступают в обменную реакцию. При
- •Пероксид натрия с сернистым газом также вступает в ОВР с образовани-ем сульфата натрия:
- •Гидроксиды щелочных металлов (щелочи) Способы получения
- •Химические свойства 1. Гидроксиды щелочных металлов реагируют со всеми кислотами (и
- •Необычно ведет себя оксид азота (IV) при взаимодействии с щелочами. Дело в том,
- •4. Щелочи также взаимодействуют с кислыми солями. При этом образуются средние соли, или
- •6. Щелочи взаимодействуют с амфотерными металлами, кроме железа и хрома. При этом в
- •8.Гидроксиды всех щелочных металлов плавятся без разложения, гидроксид лития разлагается при нагревании до
- •Нитраты и нитриты щелочных металлов Нитраты щелочных металлов при нагревании разлагаются
- •Щелочно-земельные металлы
- •Химические свойства 1. Щелочноземельные металлы — сильные восстановители.
- •1.4. С азотом магний взаимодействует при комнатной температуре с образованием нитрида:
- •Щелочноземельные металлы горят на воздухе при температуре около 500°С, в результате также образуются
- •2.3. При взаимодействии щелочноземельных металлов с концентрированной серной кислотой образуется сера.
- •Оксиды щелочноземельных металлов Способы получения
- •Химические свойства
- •4. Оксид бериллия взаимодействует с щелочами и основными оксидами.
- •Гидроксиды щелочноземельных металлов Способы получения
- •химические свойства
- •3. Гидроксиды кальция, стронция и бария реагируют с амфотерными оксидами и гидроксидами. При
- •6. Гидроксиды кальция, стронция и бария взаимодействуют с амфотерными металлами, кроме железа и
- •Нитраты щелочноземельных металлов Нитраты кальция, стронция и бария при нагревании разлагаются
- •3.Карбонаты щелочноземельных металлов взаимодействуют с более сильными кислотами с образованием новой соли, углекислого
- •Жесткость воды Постоянная и временная жесткость
- •Способы устранения жесткости
- •Алюминий
- •Химические свойства 1. Алюминий – сильный восстановитель. Поэтому он реагирует со многими неметаллами.
- •2. Алюминий взаимодействует со сложными веществами: 2.1. Реагирует ли алюминий с водой?
- •2.3. При обычных условиях алюминий не реагирует с концентрированной серной кислотой из-за пассивации
- •2.5. Алюминий – амфотерный металл, поэтому он взаимодействует с щелочами. При взаимодействии алюминия
- •Еще пример:
- •Оксид алюминия можно получить различными методами: 1. Горением алюминия на воздухе:
- •Оксид алюминия растворяется в избытке щелочи с
- •6. Оксид алюминия проявляет слабые окислительные свойства. Например, оксид алюминия реагирует с гидридом
- •1.Гидроксид алюминия можно получить действием раствора аммиака на соли алюминия.
- •Хлорид алюминия реагирует с сульфидом натрия с образованием гидроксида алюминия, сероводорода и хлорида
- •. Гидроксид алюминия взаимодействует с растворимыми основаниями (щелочами). При этом в расплаве образуются
- •Нитрат и сульфат алюминия Нитрат алюминия при нагревании разлагается на оксид
- •гидроксокомплекс разрушается под действием избытка углекислого газа. При этом с СО2 реагирует NaOH
- •Например, с соляной кислотой:
- •При этом хлор диспропорционирует.
- •Гидролиз солей алюминия
- •Алюминаты
- •Бинарные соединения Сульфид алюминия под действием азотной кислоты окисляется до сульфата:
Гидроксиды щелочных металлов (щелочи) Способы получения
1.Щелочи получают электролизом растворов хлоридов щелочных метал- лов:
2NaCl + 2H2O → 2NaOH + H2 + Cl2
2.При взаимодействии щелочных металлов, их оксидов, пероксидов, гидридов и некоторых других бинарных соединений с водой также образуются щелочи.
Например, натрий, оксид натрия, гидрид натрия и пероксид натрия при растворении в воде образуют щелочи:
2Na + 2H2O → 2NaOH + H2
Na2O + H2O → 2NaOH 2NaH + 2H2O → 2NaOH + H2
Na2O2 + H2O → 2NaOH + H2O2
3. Некоторые соли щелочных металлов (карбонаты, сульфаты и др.) при взаимодействии с гидроксидами кальция и бария также образуют щелочи.
Например, карбонат калия с гидроксидом кальция образует карбонат кальция и гидроксид калия:
K2CO3 + Ca(OH)2 → CaCO3↓ + 2KOH
Химические свойства 1. Гидроксиды щелочных металлов реагируют со всеми кислотами (и
сильными, и слабыми, и растворимыми, и нерастворимыми). При этом образуются средние или кислые соли, в зависимости от соотношения реагентов.
Например, гидроксид калия с фосфорной кислотой реагирует с образованием фосфатов, гидрофосфатов или дигидрофосфатов:
3KOH + H3PO4 → K3PO4 + H2O 2KOH + H3PO4 → K2HPO4 + 2H2O KOH + H3PO4 → KH2PO4 + H2O
2. Гидроксиды щелочных металлов реагируют с кислотными оксидами. При этом образуются средние или кислые соли, в зависимости от соотношения реагентов.
Например, гидроксид натрия с углекислым газом реагирует с образованием карбонатов или гидрокарбонатов:
2NaOH(избыток) + CO2 → Na2CO3 + H2O NaOH + CO2 (избыток) → NaHCO3
Необычно ведет себя оксид азота (IV) при взаимодействии с щелочами. Дело в том, что этому оксиду соответствуют две кислоты — азотная (HNO3) и азотистая (HNO2). «Своей» одной
кислоты у него нет. Поэтому при взаимодействии оксида азота (IV) с щелочами образуются две соли- нитрит и нитрат:
2NO2 + 2NaOH = NaNO3 + NaNO2 + H2O
А вот в присутствии окислителя, например, молекулярного кислорода, образуется только одна соль — нитрат, т.к. азот +4 только повышает степень окисления:
2KOH + 2NO2 + O2 = 2KNO3 + H2O
3. Гидроксиды щелочных металлов реагируют с амфотерными оксидами и гидроксидами. При этом в расплаве образуются средние соли, а в растворе комплексные соли.
Например, гидроксид натрия с оксидом алюминия реагирует в расплаве с образованием алюминатов:
2NaOH + Al2O3 → 2NaAlO2 + H2O
в растворе образуется комплексная соль — тетрагидроксоалюминат: 2NaOH + Al2O3 + 3H2O → 2Na[Al(OH)4]
Еще пример: гидроксид натрия с гидроксидом алюминия в расплаве образут также комплексную соль:
NaOH + Al(OH)3 → Na[Al(OH)4]
4. Щелочи также взаимодействуют с кислыми солями. При этом образуются средние соли, или менее кислые соли.
Например: гидроксид калия реагирует с гидрокарбонатом калия с образованием карбоната калия:
KOH + KHCO3 → K2CO3 + H2O
5. Щелочи взаимодействуют с простыми веществами- неметаллами (кроме инертных газов, азота, кислорода, водорода и углерода).
При этом кремний окисляется щелочами до силиката и водорода:
2NaOH + Si + H2O → Na2SiO3 + H2
Фтор окисляет щелочи. При этом выделяется молекулярный кислород:
4NaOH + 2F2 → 4NaF + O2 (OF2)+ 2H2O
Другие галогены, сера и фосфор — диспропорционируют в щелочах:
3KOH + P4 + 3H2O = 3KH2PO2 + PH3↑
2KOH(холодный) + Cl2 = KClO + KCl + H2O 6KOH(горячий) + 3Cl2 = KClO3 + 5KCl + 3H2O
Сера взаимодействует с щелочами только при нагревании:
6NaOH + 3S = 2Na2S + Na2SO3 + 3H2O
6. Щелочи взаимодействуют с амфотерными металлами, кроме железа и хрома. При этом в расплаве образуются соль и водород:
2KOH + Zn → K2ZnO2 + H2
В растворе образуются комплексная соль и водород: 2NaOH + 2Al + 6Н2О = 2Na[Al(OH)4] + 3Н2
7. Гидроксиды щелочных металлов вступают в обменные реакции с растворимыми солями.
С щелочами взаимодействуют соли тяжелых металлов. Например, хлорид меди (II) реагирует с гидроксидом натрия с
образованием хлорида натрия и осадка гидроксида меди (II):
2NaOH + CuCl2 = Cu(OH)2↓+ 2NaCl
Также с щелочами взаимодействуют соли аммония.
Например, при взаимодействии хлорида аммония и гидроксида натрия образуются хлорид натрия, аммиак и вода:
NH4Cl + NaOH = NH3 + H2O + NaCl
8.Гидроксиды всех щелочных металлов плавятся без разложения, гидроксид лития разлагается при нагревании до температуры 600°С:
2LiOH → Li2O + H2O
9.Все гидроксиды щелочных металлов проявляют
свойства сильных оснований. В воде практически нацело диссоциируют, образуя щелочную среду и меняя окраску индикаторов.
NaOH ↔ Na+ + OH—
10. Гидроксиды щелочных металлов в расплаве подвергаются электролизу. При этом на катоде восстанавливаются
сами металлы, а на аноде выделяется молекулярный кислород:
4NaOH → 4Na + O2 + 2H2O
Нитраты и нитриты щелочных металлов Нитраты щелочных металлов при нагревании разлагаются
на нитриты и кислород. Исключение — нитрат лития. Он разлагается на оксид лития, оксид азота (IV) и кислород.
Например, нитрат натрия разлагается при нагревании на нитрит натрия и молекулярный кислород:
2NaNO3 → 2NaNO2 + O2
Нитраты щелочных металлов в реакциях могут выступать в качестве окислителей.
Нитриты щелочных металлов могут быть окислителями или восстановителями.
В щелочной среде нитраты и нитриты — очень мощные окислители. Например, нитрат натрия с цинком в щелочной среде восстанавливается до аммиака:
NaNO3 + 4Zn + 7NaOH + 6H2O = 4Na2[Zn(OH)4] + NH3↑
Сильные окислители окисляют нитриты до нитратов.
Например, перманганат калия в кислой среде окисляет нитрит натрия до нитрата натрия:
5NaNO2 + 2KMnO4 + 3H2SO4 = 5NaNO3 + 2MnSO4 + K2SO4 + 3H2O
Щелочно-земельные металлы
•Способы получения
•Магний получают электролизом расплавленного карналлита или хлорида магния с добавками хлорида натрия при 720–750°С:
•MgCl2 → Mg + Cl2
•или восстановлением прокаленного доломита в электропечах при 1200– 1300°С:
•2(CaO · MgO) + Si → 2Mg + Ca2SiO4
•Кальций получают электролизом расплавленного хлорида кальция с добавками фторида кальция:
•CaCl2 → Ca + Cl2
•Барий получают восстановлением оксида бария алюминием в вакууме при 1200 °C:
•4BaO+ 2Al → 3Ba + Ba(AlO2)2
Химические свойства 1. Щелочноземельные металлы — сильные восстановители.
Поэтому они реагируют почти со всеми неметаллами.
1.1.Щелочноземельные металлы реагируют с галогенами с образованием галогенидов при нагревании.
Например, бериллий взаимодействует с хлором с образованием хлорида бериллия:
Be + Cl2 → BeCl2
1.2.Щелочноземельные металлы реагируют при нагревании с
серой и фосфором с образованием сульфидов и
фосфоридов.
Например, кальций взаимодействует с серой при нагревании:
Ca + S → CaS
Кальций взаимодействует с фосфором с образованием фосфидов:
3Ca + 2P → Ca3P2
1.3. Щелочноземельные металлы реагируют с водородом при нагревании. При этом образуются бинарные соединения
— гидриды. Бериллий с водородом не взаимодействует, магний реагирует лишь при повышенном давлении.
Mg + H2 → MgH2
1.4. С азотом магний взаимодействует при комнатной температуре с образованием нитрида:
6Mg + 2N2 → 2Mg3N2
Остальные щелочноземельные металлы реагируют с азотом при нагревании.
1.5. Щелочноземельные металлы реагируют с углеродом с образованием карбидов, преимущественно ацетиленидов. Например, кальций взаимодействует с углеродом с образованием карбида кальция:
Ca + 2C → CaC2
Бериллий реагирует с углеродом при нагревании с образованием карбида — метанида:
2Be + C → Be2C
1.6. Бериллий сгорает на воздухе при температуре около 900°С:
2Be + O2 → 2BeO
Магний горит на воздухе при 650°С с выделением большого количества света. При этом образуются оксиды и нитриды:
2Mg + O2 → 2MgO
3Mg + N2 → Mg3N2
