- •Электрохимические процессы Электролиз солей и расплавов
- •Рассмотрим процесс электролиза расплава хлорида натрия. В расплаве идет процесс термической диссоциации:
- •главное, что вы должны помнить: в процессе
- •Для определения продуктов электролиза водных растворов электролитов существуют следующие правила.
- •2. Процесс на аноде зависит от материала анода и от природы аниона:
- •Процессы, происходящие на катоде
- •Активным называется анод, материал которого может окисляться в ходе электролиза. В качестве материалов
- •Анод нерастворимый (например, графитовый). В растворе идет процесс электролитической диссоциации:
- •Суммарное молекулярное уравнение:
- •Количественные характеристики электролиза * выражаются двумя законами Фарадея:
- •Величина называется электрохимическим эквивалентом вещества. Если продолжительность электролиза измерять в часах, то число
- •если металлическую пластинку (электрод) опустить в воду, то катионы металла на ее поверхности
- •Гальванический элемент
- •если удалять из металла избыточные электроны, то равновесие (1) будет смещено вправо. Такие
- •Способность отдавать ионы в раствор у Zn больше, чем у Cu, поэтому концентрация
- •Электрохимическая цепь для медно-цинкового элемента имеет вид:
- •ДВОЙНОЙ ЭЛЕКТРИЧЕСКИЙ СЛОЙ
- •Первые представления о двойном электрическом слое были развиты Гельмгольцем, который считал, что и
- •Так как методов прямого измерения электродных потенциалов не существует, то возможно только измерение
- •Равновесный потенциал зависит:
- •Стандартным электродным потенциалом металла называют его электродный потенциал, возникающий при погружении металла в
- •Термодинамика гальванического элемента
- •Комплексные соединения
- •Номенклатура комплексных соединений
- •Соединения с комплексными анионами. Вначале называют комплексный анион в именительном падеже: перечисляют лиганды,
- •Реакции образования комплексных соединений
- •Образование комплексных солей.
- •Образование комплексных солей.
- •Реакции разрушения комплексных соединений
- •Нагревания некоторых комплексных соединений:
- •Диссоциация комплексных соединений
- •Величина, обратная Кн, называется константой устойчивости:
- •Из 110 известных к настоящему времени элементов только 22 относятся к неметаллам, большинство
- •Металлам присущи характерные признаки, проявляющиеся, как правило, одновременно:
- •Металлам присущи характерные признаки, проявляющиеся, как правило, одновременно:
- •Металлы реагируют с простыми веществами - неметаллами: со фтором – почти все металлы,
- •. С водой взаимодействуют, вытесняя водород из воды, только те металлы, значение электродных
- •Более сильным окислителем, чем серная кислота, является азотная. В разбавленной азотной кислоте окислителем
- •Коррозия – самопроизвольный окислительно-восстановительный процесс разрушения металла при взаимодействии с окружающей средой. Среда,
- •лектрохимическая коррозия - это окисление металлов в электропроводных средах, сопровождающееся образованием и протеканием
- •Механизм электрохимической коррозии связан с возникновением и работой на поверхности металла во влажной
- •К основным методам защиты от коррозии относятся:
- •Применение коррозионно-стойких материалов.
- •ром. Внешняя электронная конфигурация атома хрома 3d54s1. В соединениях обычно проявляет степени окисления
- •Железо. Конфигурация внешней электронной оболочки атома 3d64s2. Железо проявляет переменную валентность (наиболее устойчивые
- •Железо легко реагирует с галогенами и галогеноводородами, давая соли, например хлориды FeCl2 и
- •Галогены
- •Атомы галогенов содержат на внешнем энергетическом уровне 1 неспаренный электрон и три неподеленные
- •Галоген
- •В лаборатории хлор получают взаимодействием концентрированной соляной кислоты с сильными окислителями.
- •2. Получение фтора.
- •Химические свойства галогенов
- •1.4. При взаимодействии с металлами галогены проявляют свойства окислителей, образуя галогениды.
- •1.5. Водород горит в атмосфере фтора:
- •2. Со сложными веществами галогены реагируют, также проявляя преимущественно окислительные свойства. Галогены охотно
- •образованием различных солей. Фтор окисляет щелочи. Например, хлор реагирует с холодным раствором гидроксидом
- •апример, фтор окисляет хлор с образованием фторида хлора (I):
- •Галогеноводороды Строение молекулы и физические свойства
- •Химические свойства галогеноводородов 1. В водном растворе галогеноводороды проявляют кислотные
- •Как типичные минеральные кислоты, водные растворы галогеноводородов реагируют с металлами, расположенными в ряду
- •ачественная реакция на галогенид-ионы – взаимодействие с растворимыми солями серебра.
- •4. Восстановительные свойства галогеноводородов усиливаются в ряду HF – HCl – HBr –
- •Например, бромоводород окисляется концентрированной серной кислотой:
- •Йодоводород легко окисляется соединениями азота, например, оксидом азота (IV):
- •Способы получения галогенидов 1. Галогениды металлов получают при взаимодействии галогенов с
- •4. Галогениды металлов можно получить при взаимодействии оснований и амфотерных гидроксидов с галогеноводородами.
- •Галогениды металлов проявляют восстановительные свойства. Хлориды окисляются только сильными окислителями, а вот йодиды
- •Более активные галогены вытесняют менее активные из солей.
- •Хлорноватистая кислота и ее соли
- •3. Ярко выражены окислительные свойства хлорноватистой кислоты за счет атома хлора в степени
- •Гипохлориты вступают в обменные реакции с другими солями, если образуется слабый электролит.
- •лорноватая кислота и ее соли
- •1. Хлораты – сильные окислители.
- •Хлорная кислота и ее соли
- •Водород
- •типичные
- •Способы получения
- •Химические свойства
- •2. Водород взаимодействует со сложными веществами: 2.1. Восстанавливает металлы из основных и
- •Применение водорода
- •Водородные соединения металлов
- •Химические свойства
- •Кислород
- •Получение кислорода 1. Промышленный способ — перегонка жидкого воздуха и электролиз воды:
- •Кислород легко реагирует с щелочными и щелочноземельными металлами:
- •С неметаллами (серой, графитом, водородом, фосфором и др.) кислород реагирует при нагревании:
- •Озон
- •Сера и ее соединения
- •Способы получения серы
- •Химические свойства серы
- •2. Со сложными веществами сера реагирует, также проявляя окислительные и восстановительные свойства.
- •2.2. При растворении в щелочах сера диспропорционирует до сульфита и сульфида. Например, сера
- •Сероводород
- •Способы получения сероводорода
- •Химические свойства сероводорода
- •Под действием избытка хлора в водном растворе сероводород окисляется до серной кислоты:
- •4. Сероводород в растворе реагирует с растворимыми солями тяжелых металлов: меди, серебра, свинца,
- •Способы получения сульфидов
- •Химические свойства сульфидов
- •3. Нерастворимые сульфиды растворяются в концентрированной азотной кислоте или концентрированной серной кислоте. При
- •6. Реакции сульфидов с растворимыми солями свинца, серебра, меди используют как качественные на
- •Оксид серы (IV)
- •химические свойства оксида серы (IV):
- •3. Наиболее ярко выражены восстановительные свойства SO2. При
- •4. В присутствии сильных восстановителей SO2 способен проявлять
- •Оксид серы (VI)
- •Химические свойства оксида серы (VI)
- •Серная кислота H2SO4
- •Способы получения
- •Назначение и уравненяи реакций
- •Химические свойства
- •Серная кислота вытесняет более слабые из солей в растворе (карбонаты, сульфиды Также серная
- •5. Разбавленная серная кислота взаимодействует с металлами, которые расположены в ряду активности металлов
- •При взаимодействии с неактивными металлами концентрированная серная кислота восстанавливается до сернистого газа:
- •При этом образуется белый кристаллический осадок сульфата бария:
- •Химические свойства
- •Сульфаты таких металлов, как медь Cu, алюминий Al, цинк Zn, хром Cr, железо
- •Азот
- •Способы получения азота
- •Химические свойства азота
- •1.4. Азот реагирует с активными металлами: с литием при комнатной температуре, кальцием, натрием
- •Способы получения аммиака В лаборатории аммиак получают при взаимодействии солей аммония с щелочами.
- •В промышленности аммиак получают с помощью процесса Габера: прямым синтезом из водорода и
- •среда водного раствора аммиака – щелочная. Однако аммиак – слабое основание. При 20
- •3. В качестве основания, водный раствор аммиака реагирует с растворами солей тяжелых металлов,
- •7. За счет азота в степени окисления -3 аммиак проявляет восстановительные свойства. Может
- •Способы получения солей аммония
- •химические свойства солей аммония
- •3. Соли аммония подвергаются гидролизу по катиону, т.к. гидроксид аммония — слабое основание:
- •Оксиды азота
- •Оксид азота (I)
- •химические свойства оксида азота (I):
- •Оксид азота (II)
- •Химические свойства.
- •оксид азота (III)
- •Оксид азота (IV)
- •Химические свойства.
- •3. Оксид азота (IV) – сильный окислитель. В атмосфере оксида азота (IV) горят
- •Оксид азота (V)
- •Химические свойства оксида азота (V).
- •Азотная кислота HNO3 – это сильная одноосновная кислота-
- •Способы получения
- •Химические свойства
- •5. Азотная кислота активно взаимодействует с металлами. При этом никогда не выделяется водород!
- •Концентрированная азотная кислота взаимодействует с неактивными металлами и металлами средней активности (в ряду
- •Очень разбавленная азотная кислота реагирует с металлами с образованием нитрата аммония:
- •7. Концентрированная азотная кислота окисляет сложные вещества (в которых есть элементы в отрицательной,
- •Азотистая кислота
- •Соли азотистой кислоты — нитриты
- •В кислой среде нитриты выступают в качестве окислителей. При окислении йодидов или соединений
- •Углерод
- •химические свойства
- •1.4.С азотом углерод реагирует при действии электрического разряда, образуя дициан:
- •2. Углерод взаимодействует со сложными веществами:
- •образуются оксид серы (IV), оксид углерода (IV) и вода:
- •Способы получения В лаборатории угарный газ можно получить действием
- •Химические свойства
- •4.Под давлением оксид углерода (II) реагирует с щелочами. При этом образуется формиат –
- •Способы получения В лаборатории углекислый газ можно получить разными способами:
- •3. Углекислый газ также образуется при термическом разложении нерастворимых карбонатов и при разложении
- •Химические свойства
- •3. Углекислый газ взаимодействует с карбонатами. При пропускании СО2 через раствор карбонатов образуются
- •Карбонаты и гидрокарбонаты
- •Гидролиз карбонатов и гидрокарбонатов
- •Щелочные металлы
- •Химические свойства 1. Щелочные металлы — сильные восстановители. Поэтому они
- •1.5. Щелочные металлы реагируют с углеродом с образованием карбидов, преимущественно ацетиленидов:
- •2.2.Щелочные металлы взаимодействуют с минеральными кислотами (с соляной, фосфорной и разбавленной серной кислотой)
- •С разбавленной азотной кислотой образуется молекулярный азот:
- •Метанол с натрием образуют метилат натрия и водород:
- •Оксиды щелочных металлов Способы получения
- •Химические свойства Оксиды щелочных металлов — типичные основные оксиды. Вступают в
- •Пероксиды щелочных металлов Химические свойства
- •При взаимодействии с минеральными кислотами на холоде пероксиды вступают в обменную реакцию. При
- •Пероксид натрия с сернистым газом также вступает в ОВР с образовани-ем сульфата натрия:
- •Гидроксиды щелочных металлов (щелочи) Способы получения
- •Химические свойства 1. Гидроксиды щелочных металлов реагируют со всеми кислотами (и
- •Необычно ведет себя оксид азота (IV) при взаимодействии с щелочами. Дело в том,
- •4. Щелочи также взаимодействуют с кислыми солями. При этом образуются средние соли, или
- •6. Щелочи взаимодействуют с амфотерными металлами, кроме железа и хрома. При этом в
- •8.Гидроксиды всех щелочных металлов плавятся без разложения, гидроксид лития разлагается при нагревании до
- •Нитраты и нитриты щелочных металлов Нитраты щелочных металлов при нагревании разлагаются
- •Щелочно-земельные металлы
- •Химические свойства 1. Щелочноземельные металлы — сильные восстановители.
- •1.4. С азотом магний взаимодействует при комнатной температуре с образованием нитрида:
- •Щелочноземельные металлы горят на воздухе при температуре около 500°С, в результате также образуются
- •2.3. При взаимодействии щелочноземельных металлов с концентрированной серной кислотой образуется сера.
- •Оксиды щелочноземельных металлов Способы получения
- •Химические свойства
- •4. Оксид бериллия взаимодействует с щелочами и основными оксидами.
- •Гидроксиды щелочноземельных металлов Способы получения
- •химические свойства
- •3. Гидроксиды кальция, стронция и бария реагируют с амфотерными оксидами и гидроксидами. При
- •6. Гидроксиды кальция, стронция и бария взаимодействуют с амфотерными металлами, кроме железа и
- •Нитраты щелочноземельных металлов Нитраты кальция, стронция и бария при нагревании разлагаются
- •3.Карбонаты щелочноземельных металлов взаимодействуют с более сильными кислотами с образованием новой соли, углекислого
- •Жесткость воды Постоянная и временная жесткость
- •Способы устранения жесткости
- •Алюминий
- •Химические свойства 1. Алюминий – сильный восстановитель. Поэтому он реагирует со многими неметаллами.
- •2. Алюминий взаимодействует со сложными веществами: 2.1. Реагирует ли алюминий с водой?
- •2.3. При обычных условиях алюминий не реагирует с концентрированной серной кислотой из-за пассивации
- •2.5. Алюминий – амфотерный металл, поэтому он взаимодействует с щелочами. При взаимодействии алюминия
- •Еще пример:
- •Оксид алюминия можно получить различными методами: 1. Горением алюминия на воздухе:
- •Оксид алюминия растворяется в избытке щелочи с
- •6. Оксид алюминия проявляет слабые окислительные свойства. Например, оксид алюминия реагирует с гидридом
- •1.Гидроксид алюминия можно получить действием раствора аммиака на соли алюминия.
- •Хлорид алюминия реагирует с сульфидом натрия с образованием гидроксида алюминия, сероводорода и хлорида
- •. Гидроксид алюминия взаимодействует с растворимыми основаниями (щелочами). При этом в расплаве образуются
- •Нитрат и сульфат алюминия Нитрат алюминия при нагревании разлагается на оксид
- •гидроксокомплекс разрушается под действием избытка углекислого газа. При этом с СО2 реагирует NaOH
- •Например, с соляной кислотой:
- •При этом хлор диспропорционирует.
- •Гидролиз солей алюминия
- •Алюминаты
- •Бинарные соединения Сульфид алюминия под действием азотной кислоты окисляется до сульфата:
Химические свойства 1. Щелочные металлы — сильные восстановители. Поэтому они
реагируют почти со всеми неметаллами.
1.1. Щелочные металлы легко реагируют с галогенами с образованием галогенидов:
2K + I2 = 2KI
1.2. Щелочные металлы реагируют с серой с образованием сульфидов:
2Na + S = Na2S
1.3. Щелочные металлы активно реагируют с фосфором и водородом (очень активно). При этом образуются бинарные соединения
— фосфиды и гидриды:
3K + P = K3P
2Na + H2 = 2NaH
1.4. С азотом литий реагирует при комнатной температуре с образованием нитрида:
6Li + N2 = 2Li3N
Остальные щелочные металлы реагируют с азотом при нагревании.
1.5. Щелочные металлы реагируют с углеродом с образованием карбидов, преимущественно ацетиленидов:
2Na + 2C = Na2C2
1.6. При взаимодействии с кислородом каждый щелочной металл проявляет свою индивидуальность: при горении на воздухе литий образует оксид, натрий – преимущественно пероксид, калий и остальные металлы
– надпероксид.
4Li + O2 = 2Li2O
2Na + O2 = Na2O2 K + O2 = KO2
Цезий самовозгорается на воздухе, поэтому его хранят в запаянных ампулах.
2. Щелочные металлы активно взаимодействуют со сложными
веществами:
2.1. Щелочные металлы бурно (со взрывом) реагируют с водой. Взаимодействие щелочных металлов с водой приводит к образованию щелочи и водорода. Литий реагирует бурно, но без взрыва.
Например, калий реагирует с водой очень бурно:
2K0 + H +O = 2K+OH + H
2.2.Щелочные металлы взаимодействуют с минеральными кислотами (с соляной, фосфорной и разбавленной серной кислотой) со взрывом. При этом образуются соль и водород.
Например, натрий бурно реагирует с соляной кислотой: 2Na + 2HCl = 2NaCl + H2↑
2.3.При взаимодействии щелочных металлов с
концентрированной серной кислотой выделяется сероводород. Например, при взаимодействии натрия с концентрированной серной кислотой образуется сульфат натрия, сероводород и вода:
8Na + 5H2SO4(конц.) → 4Na2SO4 + H2S + 4H2O
2.4. Щелочные металлы реагируют с азотной кислотой. При взаимодействии с концентрированной азотной
кислотой образуется оксид азота (I): 8Na + 10HNO3 (конц) → N2O + 8NaNO3 + 5H2O
С разбавленной азотной кислотой образуется молекулярный азот:
10Na + 12HNO3 (разб)→ N2 +10NaNO3 + 6H2O
При взаимодействии щелочных металлов с очень разбавленной азотной кислотой образуется нитрат аммония:
8Na + 10HNO3 = 8NaNO3 + NH4NO3 + 3H2O
2.5. Щелочные металлы могут реагировать даже с веществами, которые проявляют очень слабые кислотные свойства. Например, с аммиаком, ацетиленом (и прочими терминальными алкинами), спиртами, фенолом и органическими кислотами. Например, при
взаимодействии лития с аммиаком образуются амиды и водород:
2Li + 2NH3 = 2LiNH2 + H2 ↑
Ацетилен с натрием образует ацетиленид натрия и также водород:
Н ─ C ≡ С ─ Н + 2Na → Na ─ C≡C ─ Na + H2
Фенол с натрием реагирует с образованием фенолята натрия и водорода:
2C6H5OH + 2Na → 2C6H5ONa + H2↑
Метанол с натрием образуют метилат натрия и водород:
2СН3ОН + 2Na → 2 CH3ONa + H2↑
Уксусная кислота с литием образует ацетат лития и водород: 2СH3COOH + 2Li → 2CH3COOOLi + H2↑
Щелочные металлы реагируют с галогеналканами (реакция Вюрца).
Например, хлорметан с натрием образует этан и хлорид натрия:
2CH3Cl + 2Na → C2H6 + 2NaCl
2.6. В расплаве щелочные металлы могут взаимодействовать с некоторыми солями. Обратите внимание! В растворе щелочные металлы будут взаимодействовать с водой, а не с солями других металлов.
Например, натрий взаимодействует в расплаве с хлоридом алюминия :
3Na + AlCl3 → 3NaCl + Al
Оксиды щелочных металлов Способы получения
Оксиды щелочных металлов (кроме лития) можно получить только косвенными методами: взаимодействием натрия с окислителями в расплаве:
1. Оксид натрия можно получить взаимодействием натрия с нитратом натрия в расплаве:
10Na + 2NaNO3 → 6Na2O + N2 ↑
2. Взаимодействием натрия с пероксидом натрия:
2Na + Na2O2 → 2Na2O
3. Взаимодействием натрия с расплавом щелочи:
2Na + 2NaOН → 2Na2O + Н2↑
4. Оксид лития можно получить разложением гидроксида лития: 2LiOН → Li2O + Н2O
Химические свойства Оксиды щелочных металлов — типичные основные оксиды. Вступают в
реакции с кислотными и амфотерными оксидами, кислотами, водой. 1. Оксиды щелочных металлов взаимодействуют с кислотными и амфотерными оксидами:
Например, оксид натрия взаимодействует с оксидом фосфора (V):
3Na2O + P2O5 → 2Na3PO4
Оксид лития взаимодействует с амфотерным оксидом алюминия:
Na2O + Al2O3 → 2NaAlO2
2. Оксиды щелочных металлов взаимодействуют с кислотами с
образованием средних и кислых солей (с многоосновными кислотами).
Например, оксид калия взаимодействует с соляной кислотой с образованием хлорида калия и воды:
K2O + 2HCl → 2KCl + H2O
3.Оксиды щелочных металлов активно взаимодействуют с водой с
образованием щелочей.
Например, оксид лития взаимодействует с водой с образованием гидроксида лития:
Li2O + H2O → 2LiOH
4.Оксиды щелочных металлов окисляются кислородом (кроме оксида лития): оксид натрия — до пероксида, оксиды калия, рубидия и цезия – до надпероксида.
2Na2O + O2 = 2Na2O2
Пероксиды щелочных металлов Химические свойства
Свойства пероксидов очень похожи на свойства оксидов. Однако пероксиды щелочных металлов, в отличие от оксидов, содержат атомы кислорода со степенью окисления -1. Поэтому они могут могут проявлять как окислительные, так и восстановительные свойства.
1. Пероксиды щелочных металлов взаимодействуют с водой. При этом на холоде протекает обменная реакция, образуются щелочь и пероксид водорода:
Na2O2 + 2H2O (хол.) = 2NaOH + H2O2
При нагревании пероксиды диспропорционируют в воде, образуются щелочь и кислород:
2Na2O2 + 2H2O (гор.) = 4NaOH + O2↑
2. Пероксиды диспропорционируют при взаимодействии с кислотными оксидами.
Например, пероксид натрия реагирует с углекислым газом с образовани- ем карбоната натрия и кислорода:
2Na2O2 + CO2 = 2Na2CO3 + O2↑
При взаимодействии с минеральными кислотами на холоде пероксиды вступают в обменную реакцию. При этом образуются соль и перекись водорода:
Na2O2 + 2HCl = 2NaCl + H2O2
При нагревании пероксиды, опять-таки, диспропорционируют:
2Na2O2 + 2H2SO4 (разб.гор.) = 2Na2SO4 + 2H2O + O2↑
4. Пероксиды щелочных металлов разлагаются при нагревании, с образованием оксида и кислорода:
2Na2O2 = 2Na2O + O2↑
5. При взаимодействии с восстановителями пероксиды проявляют окис-лительные свойства.
Например, пероксид натрия с угарным газом реагирует с образованием карбоната натрия:
Na2O2 + CO = Na2CO3
Пероксид натрия с сернистым газом также вступает в ОВР с образовани-ем сульфата натрия:
Na2O2 + SO2 = Na2SO4
2Na2O2 |
+ S = Na2SO3 + Na2O |
|
Na2O2 |
+ 2H2SO4 |
+ 2NaI = I2 + 2Na2SO4 + 2H2O |
Na2O2 |
+ 2H2SO4 |
+ 2FeSO4 = Fe2(SO4)3 + Na2SO4 + 2H2O |
3Na2O2 |
+ 2Na3[Cr(OH)6] = 2Na2CrO4 + 8NaOH + 2H2O |
|
6. При взаимодействии с сильными |
||
окислителями пероксиды проявляют свойства восстановителей и
окисляются, как правило, до молекулярного кислорода. Например, при взаимодействии с подкисленным раствором перманганата калия пероксид натрия образует соль и молекулярный кислород:
5Na2O2 + 8H2SO4 + 2KMnO4 = 5O2 + 2MnSO4 + 8H2O + 5Na2SO4 + K2SO4
