- •Электрохимические процессы Электролиз солей и расплавов
- •Рассмотрим процесс электролиза расплава хлорида натрия. В расплаве идет процесс термической диссоциации:
- •главное, что вы должны помнить: в процессе
- •Для определения продуктов электролиза водных растворов электролитов существуют следующие правила.
- •2. Процесс на аноде зависит от материала анода и от природы аниона:
- •Процессы, происходящие на катоде
- •Активным называется анод, материал которого может окисляться в ходе электролиза. В качестве материалов
- •Анод нерастворимый (например, графитовый). В растворе идет процесс электролитической диссоциации:
- •Суммарное молекулярное уравнение:
- •Количественные характеристики электролиза * выражаются двумя законами Фарадея:
- •Величина называется электрохимическим эквивалентом вещества. Если продолжительность электролиза измерять в часах, то число
- •если металлическую пластинку (электрод) опустить в воду, то катионы металла на ее поверхности
- •Гальванический элемент
- •если удалять из металла избыточные электроны, то равновесие (1) будет смещено вправо. Такие
- •Способность отдавать ионы в раствор у Zn больше, чем у Cu, поэтому концентрация
- •Электрохимическая цепь для медно-цинкового элемента имеет вид:
- •ДВОЙНОЙ ЭЛЕКТРИЧЕСКИЙ СЛОЙ
- •Первые представления о двойном электрическом слое были развиты Гельмгольцем, который считал, что и
- •Так как методов прямого измерения электродных потенциалов не существует, то возможно только измерение
- •Равновесный потенциал зависит:
- •Стандартным электродным потенциалом металла называют его электродный потенциал, возникающий при погружении металла в
- •Термодинамика гальванического элемента
- •Комплексные соединения
- •Номенклатура комплексных соединений
- •Соединения с комплексными анионами. Вначале называют комплексный анион в именительном падеже: перечисляют лиганды,
- •Реакции образования комплексных соединений
- •Образование комплексных солей.
- •Образование комплексных солей.
- •Реакции разрушения комплексных соединений
- •Нагревания некоторых комплексных соединений:
- •Диссоциация комплексных соединений
- •Величина, обратная Кн, называется константой устойчивости:
- •Из 110 известных к настоящему времени элементов только 22 относятся к неметаллам, большинство
- •Металлам присущи характерные признаки, проявляющиеся, как правило, одновременно:
- •Металлам присущи характерные признаки, проявляющиеся, как правило, одновременно:
- •Металлы реагируют с простыми веществами - неметаллами: со фтором – почти все металлы,
- •. С водой взаимодействуют, вытесняя водород из воды, только те металлы, значение электродных
- •Более сильным окислителем, чем серная кислота, является азотная. В разбавленной азотной кислоте окислителем
- •Коррозия – самопроизвольный окислительно-восстановительный процесс разрушения металла при взаимодействии с окружающей средой. Среда,
- •лектрохимическая коррозия - это окисление металлов в электропроводных средах, сопровождающееся образованием и протеканием
- •Механизм электрохимической коррозии связан с возникновением и работой на поверхности металла во влажной
- •К основным методам защиты от коррозии относятся:
- •Применение коррозионно-стойких материалов.
- •ром. Внешняя электронная конфигурация атома хрома 3d54s1. В соединениях обычно проявляет степени окисления
- •Железо. Конфигурация внешней электронной оболочки атома 3d64s2. Железо проявляет переменную валентность (наиболее устойчивые
- •Железо легко реагирует с галогенами и галогеноводородами, давая соли, например хлориды FeCl2 и
- •Галогены
- •Атомы галогенов содержат на внешнем энергетическом уровне 1 неспаренный электрон и три неподеленные
- •Галоген
- •В лаборатории хлор получают взаимодействием концентрированной соляной кислоты с сильными окислителями.
- •2. Получение фтора.
- •Химические свойства галогенов
- •1.4. При взаимодействии с металлами галогены проявляют свойства окислителей, образуя галогениды.
- •1.5. Водород горит в атмосфере фтора:
- •2. Со сложными веществами галогены реагируют, также проявляя преимущественно окислительные свойства. Галогены охотно
- •образованием различных солей. Фтор окисляет щелочи. Например, хлор реагирует с холодным раствором гидроксидом
- •апример, фтор окисляет хлор с образованием фторида хлора (I):
- •Галогеноводороды Строение молекулы и физические свойства
- •Химические свойства галогеноводородов 1. В водном растворе галогеноводороды проявляют кислотные
- •Как типичные минеральные кислоты, водные растворы галогеноводородов реагируют с металлами, расположенными в ряду
- •ачественная реакция на галогенид-ионы – взаимодействие с растворимыми солями серебра.
- •4. Восстановительные свойства галогеноводородов усиливаются в ряду HF – HCl – HBr –
- •Например, бромоводород окисляется концентрированной серной кислотой:
- •Йодоводород легко окисляется соединениями азота, например, оксидом азота (IV):
- •Способы получения галогенидов 1. Галогениды металлов получают при взаимодействии галогенов с
- •4. Галогениды металлов можно получить при взаимодействии оснований и амфотерных гидроксидов с галогеноводородами.
- •Галогениды металлов проявляют восстановительные свойства. Хлориды окисляются только сильными окислителями, а вот йодиды
- •Более активные галогены вытесняют менее активные из солей.
- •Хлорноватистая кислота и ее соли
- •3. Ярко выражены окислительные свойства хлорноватистой кислоты за счет атома хлора в степени
- •Гипохлориты вступают в обменные реакции с другими солями, если образуется слабый электролит.
- •лорноватая кислота и ее соли
- •1. Хлораты – сильные окислители.
- •Хлорная кислота и ее соли
- •Водород
- •типичные
- •Способы получения
- •Химические свойства
- •2. Водород взаимодействует со сложными веществами: 2.1. Восстанавливает металлы из основных и
- •Применение водорода
- •Водородные соединения металлов
- •Химические свойства
- •Кислород
- •Получение кислорода 1. Промышленный способ — перегонка жидкого воздуха и электролиз воды:
- •Кислород легко реагирует с щелочными и щелочноземельными металлами:
- •С неметаллами (серой, графитом, водородом, фосфором и др.) кислород реагирует при нагревании:
- •Озон
- •Сера и ее соединения
- •Способы получения серы
- •Химические свойства серы
- •2. Со сложными веществами сера реагирует, также проявляя окислительные и восстановительные свойства.
- •2.2. При растворении в щелочах сера диспропорционирует до сульфита и сульфида. Например, сера
- •Сероводород
- •Способы получения сероводорода
- •Химические свойства сероводорода
- •Под действием избытка хлора в водном растворе сероводород окисляется до серной кислоты:
- •4. Сероводород в растворе реагирует с растворимыми солями тяжелых металлов: меди, серебра, свинца,
- •Способы получения сульфидов
- •Химические свойства сульфидов
- •3. Нерастворимые сульфиды растворяются в концентрированной азотной кислоте или концентрированной серной кислоте. При
- •6. Реакции сульфидов с растворимыми солями свинца, серебра, меди используют как качественные на
- •Оксид серы (IV)
- •химические свойства оксида серы (IV):
- •3. Наиболее ярко выражены восстановительные свойства SO2. При
- •4. В присутствии сильных восстановителей SO2 способен проявлять
- •Оксид серы (VI)
- •Химические свойства оксида серы (VI)
- •Серная кислота H2SO4
- •Способы получения
- •Назначение и уравненяи реакций
- •Химические свойства
- •Серная кислота вытесняет более слабые из солей в растворе (карбонаты, сульфиды Также серная
- •5. Разбавленная серная кислота взаимодействует с металлами, которые расположены в ряду активности металлов
- •При взаимодействии с неактивными металлами концентрированная серная кислота восстанавливается до сернистого газа:
- •При этом образуется белый кристаллический осадок сульфата бария:
- •Химические свойства
- •Сульфаты таких металлов, как медь Cu, алюминий Al, цинк Zn, хром Cr, железо
- •Азот
- •Способы получения азота
- •Химические свойства азота
- •1.4. Азот реагирует с активными металлами: с литием при комнатной температуре, кальцием, натрием
- •Способы получения аммиака В лаборатории аммиак получают при взаимодействии солей аммония с щелочами.
- •В промышленности аммиак получают с помощью процесса Габера: прямым синтезом из водорода и
- •среда водного раствора аммиака – щелочная. Однако аммиак – слабое основание. При 20
- •3. В качестве основания, водный раствор аммиака реагирует с растворами солей тяжелых металлов,
- •7. За счет азота в степени окисления -3 аммиак проявляет восстановительные свойства. Может
- •Способы получения солей аммония
- •химические свойства солей аммония
- •3. Соли аммония подвергаются гидролизу по катиону, т.к. гидроксид аммония — слабое основание:
- •Оксиды азота
- •Оксид азота (I)
- •химические свойства оксида азота (I):
- •Оксид азота (II)
- •Химические свойства.
- •оксид азота (III)
- •Оксид азота (IV)
- •Химические свойства.
- •3. Оксид азота (IV) – сильный окислитель. В атмосфере оксида азота (IV) горят
- •Оксид азота (V)
- •Химические свойства оксида азота (V).
- •Азотная кислота HNO3 – это сильная одноосновная кислота-
- •Способы получения
- •Химические свойства
- •5. Азотная кислота активно взаимодействует с металлами. При этом никогда не выделяется водород!
- •Концентрированная азотная кислота взаимодействует с неактивными металлами и металлами средней активности (в ряду
- •Очень разбавленная азотная кислота реагирует с металлами с образованием нитрата аммония:
- •7. Концентрированная азотная кислота окисляет сложные вещества (в которых есть элементы в отрицательной,
- •Азотистая кислота
- •Соли азотистой кислоты — нитриты
- •В кислой среде нитриты выступают в качестве окислителей. При окислении йодидов или соединений
- •Углерод
- •химические свойства
- •1.4.С азотом углерод реагирует при действии электрического разряда, образуя дициан:
- •2. Углерод взаимодействует со сложными веществами:
- •образуются оксид серы (IV), оксид углерода (IV) и вода:
- •Способы получения В лаборатории угарный газ можно получить действием
- •Химические свойства
- •4.Под давлением оксид углерода (II) реагирует с щелочами. При этом образуется формиат –
- •Способы получения В лаборатории углекислый газ можно получить разными способами:
- •3. Углекислый газ также образуется при термическом разложении нерастворимых карбонатов и при разложении
- •Химические свойства
- •3. Углекислый газ взаимодействует с карбонатами. При пропускании СО2 через раствор карбонатов образуются
- •Карбонаты и гидрокарбонаты
- •Гидролиз карбонатов и гидрокарбонатов
- •Щелочные металлы
- •Химические свойства 1. Щелочные металлы — сильные восстановители. Поэтому они
- •1.5. Щелочные металлы реагируют с углеродом с образованием карбидов, преимущественно ацетиленидов:
- •2.2.Щелочные металлы взаимодействуют с минеральными кислотами (с соляной, фосфорной и разбавленной серной кислотой)
- •С разбавленной азотной кислотой образуется молекулярный азот:
- •Метанол с натрием образуют метилат натрия и водород:
- •Оксиды щелочных металлов Способы получения
- •Химические свойства Оксиды щелочных металлов — типичные основные оксиды. Вступают в
- •Пероксиды щелочных металлов Химические свойства
- •При взаимодействии с минеральными кислотами на холоде пероксиды вступают в обменную реакцию. При
- •Пероксид натрия с сернистым газом также вступает в ОВР с образовани-ем сульфата натрия:
- •Гидроксиды щелочных металлов (щелочи) Способы получения
- •Химические свойства 1. Гидроксиды щелочных металлов реагируют со всеми кислотами (и
- •Необычно ведет себя оксид азота (IV) при взаимодействии с щелочами. Дело в том,
- •4. Щелочи также взаимодействуют с кислыми солями. При этом образуются средние соли, или
- •6. Щелочи взаимодействуют с амфотерными металлами, кроме железа и хрома. При этом в
- •8.Гидроксиды всех щелочных металлов плавятся без разложения, гидроксид лития разлагается при нагревании до
- •Нитраты и нитриты щелочных металлов Нитраты щелочных металлов при нагревании разлагаются
- •Щелочно-земельные металлы
- •Химические свойства 1. Щелочноземельные металлы — сильные восстановители.
- •1.4. С азотом магний взаимодействует при комнатной температуре с образованием нитрида:
- •Щелочноземельные металлы горят на воздухе при температуре около 500°С, в результате также образуются
- •2.3. При взаимодействии щелочноземельных металлов с концентрированной серной кислотой образуется сера.
- •Оксиды щелочноземельных металлов Способы получения
- •Химические свойства
- •4. Оксид бериллия взаимодействует с щелочами и основными оксидами.
- •Гидроксиды щелочноземельных металлов Способы получения
- •химические свойства
- •3. Гидроксиды кальция, стронция и бария реагируют с амфотерными оксидами и гидроксидами. При
- •6. Гидроксиды кальция, стронция и бария взаимодействуют с амфотерными металлами, кроме железа и
- •Нитраты щелочноземельных металлов Нитраты кальция, стронция и бария при нагревании разлагаются
- •3.Карбонаты щелочноземельных металлов взаимодействуют с более сильными кислотами с образованием новой соли, углекислого
- •Жесткость воды Постоянная и временная жесткость
- •Способы устранения жесткости
- •Алюминий
- •Химические свойства 1. Алюминий – сильный восстановитель. Поэтому он реагирует со многими неметаллами.
- •2. Алюминий взаимодействует со сложными веществами: 2.1. Реагирует ли алюминий с водой?
- •2.3. При обычных условиях алюминий не реагирует с концентрированной серной кислотой из-за пассивации
- •2.5. Алюминий – амфотерный металл, поэтому он взаимодействует с щелочами. При взаимодействии алюминия
- •Еще пример:
- •Оксид алюминия можно получить различными методами: 1. Горением алюминия на воздухе:
- •Оксид алюминия растворяется в избытке щелочи с
- •6. Оксид алюминия проявляет слабые окислительные свойства. Например, оксид алюминия реагирует с гидридом
- •1.Гидроксид алюминия можно получить действием раствора аммиака на соли алюминия.
- •Хлорид алюминия реагирует с сульфидом натрия с образованием гидроксида алюминия, сероводорода и хлорида
- •. Гидроксид алюминия взаимодействует с растворимыми основаниями (щелочами). При этом в расплаве образуются
- •Нитрат и сульфат алюминия Нитрат алюминия при нагревании разлагается на оксид
- •гидроксокомплекс разрушается под действием избытка углекислого газа. При этом с СО2 реагирует NaOH
- •Например, с соляной кислотой:
- •При этом хлор диспропорционирует.
- •Гидролиз солей алюминия
- •Алюминаты
- •Бинарные соединения Сульфид алюминия под действием азотной кислоты окисляется до сульфата:
3. Оксид азота (IV) – сильный окислитель. В атмосфере оксида азота (IV) горят фосфор, уголь, сера, оксид серы (IV) окисляется до оксида серы (VI):
2NO2 + 2S → N2 + 2SO2
2NO2 + 2C → N2 + 2CO2 10NO2 + 8P → 5N2 + 4P2O5 NO2 + SO2 → SO3 + NO
4. Оксид азота (IV) димеризуется:
2NO2 N2O4
Оксид азота (V)
N2O5 – оксид азота (V), ангидрид азотной кислоты – кислотный оксид.
Получение оксида азота (V).
1. Получить оксид азота (V) можно окислением диоксида азота:
2NO2 + O3 → N2O5 + O2
2. Еще один способ получения оксида азота (V) – обезвоживание азотной кислоты сильным водоотнимающим веществом, оксидом фосфора (V):
2HNO3 + P2O5 → 2HPO3 + N2O5
Химические свойства оксида азота (V).
1. При растворении в воде оксид азота (V) образует азотную кислоту:
N2O5 + H2O → 2HNO3
2. Оксид азота (V), как типичный кислотный оксид, взаимодействует
с основаниями и основными оксидами с образованием солей-нитратов. Например, оксид азота (V) реагирует с гидроксидом натрия:
N2O5 + 2NaOH → 2NaNO3 + H2O
Еще пример: оксид азота (V) реагирует с оксидом кальция:
N2O5 + CaO → Ca(NO3)2
3. За счет азота со степенью окисления +5 оксид азота (V) – сильный окислитель.
Например, он окисляет серу: 2N2O5 + S → SO2 + 4NO2
4. Оксид азота (V) легко разлагается при нагревании (со взрывом):
2N2O5 → 4NO2 + O2
Азотная кислота HNO3 – это сильная одноосновная кислота-
гидроксид. При обычных условиях бесцветная, дымящая на воздухе жидкость, температура плавления −41,59 °C, кипения +82,6 °C ( при нормальном атмосферном давлении). Азотная кислота смешивается с водой во всех соотношениях. На свету частично разлагается.
Валентность азота в азотной кислоте равна IV, так как валентность V у азота отсутствует. При этом
степень окисления атома азота равна +5. Так происходит потому, что атом азота образует 3 обменные связи и одну донорно-акцепторную, является донором электронной пары.
Способы получения
В лаборатории азотную кислоту можно получить разными способами: 1. Азотная кислота образуется при действии концентрированной серной кислоты на твердые нитраты металлов. При этом менее летучая серная кислота вытесняет более летучую азотную. Например, концентрированная серная кислота вытесняет азотную из кристаллического нитрата калия:
KNO3 + H2SO4(конц) → KHSO4 + HNO3
2. В промышленности азотную кислоту получают из аммиака. Процесс осуществляется стадийно.
1 стадия. Каталитическое окисление аммиака.
4NH3 + 5O2 → 4NO + 6H2O
2 стадия. Окисление оксида азота (II) до оксида азота (IV) кислородом воздуха.
2NO + O2 → 2NO2
3 стадия. Поглощение оксида азота (IV) водой в присутствии избытка кислорода.
4NO2 + 2H2O + O2 → 4HNO3
Химические свойства
Азотная кислота – это сильная кислота. За счет азота со степенью окисления +5 азотная кислота проявляет сильные окислительные свойства.
1.Азотная кислота практически полностью диссоциирует в водном растворе.
HNO3 → H+ + NO3–
2.Азотная кислота реагирует с основными оксидами, основаниями, амфотерными оксидами и амфотерными гидроксидами.
Например, азотная кислота взаимодействует с оксидом меди (II):
CuO + 2HNO3 → Cu(NO3)2 + H2O
Еще пример: азотная кислота реагирует с гидроксидом натрия:
HNO3 + NaOH → NaNO3 + H2O
3. Азотная кислота вытесняет более слабые кислоты из их солей (карбонатов, сульфидов, сульфитов).
Например, азотная кислота взаимодействует с карбонатом натрия: 2HNO3 + Na2CO3 → 2NaNO3 + H2O + CO2
4. Азотная кислота частично разлагается при кипении или под действием света:
4HNO3 → 4NO2 + O2 + 2H2O
5. Азотная кислота активно взаимодействует с металлами. При этом никогда не выделяется водород! При взаимодействии азотной кислоты с металлами окислителем всегда выступает азот +5. Азот в степени окисления +5 может восстанавливаться до степеней окисления -3, 0, +1, +2 или +4 в зависимости от концентрации кислоты и активности металла.
металл + HNO3 → нитрат металла + вода + газ (или соль аммония)
С алюминием, хромом и железом на холоду концентрированная HNO3 не
реагирует – кислота «пассивирует» металлы, т.к. на их поверхности образуется пленка оксидов, непроницаемая для концентрированной азотной кислоты. При нагревании реакция идет. При этом азот восстанавливается до степени окисления +4:
Fe + 6HNO3(конц.) → Fe(NO3)3 + 3NO2 + 3H2O
Al + 6HNO3(конц.) → Al(NO3)3 + 3NO2 + 3H2O
Золото и платина не реагируют с азотной кислотой, но растворяются в «царской водке» – смеси концентрированных азотной и соляной кислот в соотношении 1 : 3 (по объему):
HNO3 + 3HCl + Au → AuCl3 + NO + 2H2O
Концентрированная азотная кислота взаимодействует с неактивными металлами и металлами средней активности (в ряду электрохимической активности после алюминия). При этом образуется оксид азота (IV), азот восстанавливается минимально:
4HNO3(конц.) + Cu → Cu(NO3)2 + 2NO2 + 2H2O С активными металлами (щелочными и
щелочноземельными) концентрированная азотная кислота реагирует с образованием оксида азота (I):
10HNO3 + 4Ca → 4Ca(NO3)2 + 2N2O + 5H2O
Разбавленная азотная кислота взаимодействует с неактивными металлами и металлами средней активности (в ряду электрохимической активности после алюминия). При этом образуется оксид азота (II).
8HNO3 (разб.) + 3Cu → 3Cu(NO3)2 + 2NO + 4H2O
С активными металлами (щелочными и щелочноземельными), а также оловом и железом разбавленная азотная кислота реагирует с образованием молекулярного азота:
12HNO3(разб) + 10Na → 10NaNO3 + N2 + 6H2O
При взаимодействии кальция и магния с азотной кислотой любой концентрации (кроме очень разбавленной) образуется оксид азота (I):
10HNO3 + 4Ca → 4Ca(NO3)2 + 2N2O + 5H2O
Очень разбавленная азотная кислота реагирует с металлами с образованием нитрата аммония:
10HNO3 + 4Zn → 4Zn(NO3)2 + NH4NO3 + 3H2O
6. Азотная кислота окисляет и неметаллы (кроме кислорода, водорода, хлора, фтора и некоторых других). При взаимодействии с неметаллами HNO3 обычно восстанавливается до NO или NO2, неметаллы окисляются
до соответствующих кислот, либо оксидов (если кислота неустойчива).
Например, азотная кислота окисляет серу, фосфор, углерод, йод:
6HNO3 + S → H2SO4 + 6NO2 + 2H2O
Безводная азотная кислота – сильный окислитель. Поэтому она легко взаимодействует с красным и белым фосфором. Реакция с белым фосфором протекает очень бурно. Иногда она сопровождается взрывом.
5HNO3 |
+ |
P → |
H3PO4 |
+ |
5NO2 + |
H2O |
5HNO3 |
+ |
3P |
+ 2H2O |
→ |
3H3PO4 |
+ 5NO |
7. Концентрированная азотная кислота окисляет сложные вещества (в которых есть элементы в отрицательной, либо промежуточной степени окисления): сульфиды металлов, сероводород, фосфиды, йодиды, соединения железа (II) и др. При этом азот восстанавливается
до NO2, неметаллы окисляются до соответствующих кислот (или
оксидов), а металлы окисляются до устойчивых степеней окисления. Например, азотная кислота окисляет оксид серы (IV):
2HNO3 + SO2 → H2SO4 + 2NO2
Еще пример: азотная кислота окисляет йодоводород:
6HNO3 + HI → HIO3 + 6NO2 + 3H2O
Азотная кислота окисляет углерод до углекислого газа, т.к. угольная кислота неустойчива.
3С + 4HNO3 → 3СО2 + 4NO + 2H2O
Сера в степени окисления -2 окисляется без нагревания до простого вещества, при нагревании до серной кислоты.
