- •СПОСОБЫ ВЫРАЖЕНИЯ КОНЦЕНТРАЦИИ РАСТВОРОВ
- •Массовая доля ω компонента раствора определяется как отношение массы данного компонента Х, содержащегося
- •Мольная доля χ компонента раствора равна отношению количества вещества данного компонента X к
- •Молярность (молярная концентрация) C или Cм определяется
- •Титр Т показывает, сколько граммов растворённого вещества X содержится в 1 мл или
- •Растворы – это однородные гомогенные системы, состоящие из частиц растворенного вещества, растворителя и
- •По концентрации растворенного вещества растворы делят на: Ненасыщенные растворы – это растворы, в
- •Термодинамика растворения
- •Для простоты изложения приращение энтальпии растворения ΔНраств можно представить как разность
- •Однако растворение благородных газов в органических растворителях нередко сопровождается поглощением теплоты, например гелия
- •При растворении твердых веществ с ионной решет– кой соотношение энергий Екр и Есол
СПОСОБЫ ВЫРАЖЕНИЯ КОНЦЕНТРАЦИИ РАСТВОРОВ
Массовая доля ω компонента раствора определяется как отношение массы данного компонента Х, содержащегося в данной массе раствора к массе всего раствора m. Массовая доля – безразмерная величина, её выражают в долях от единицы:
ωр.в. = mр.в./mр-ра (0 < ωр.в. < 1)
Массовый процент представляет собой массовую долю, умноженную на 100:
ω(Х) = m(Х)/m · 100% (0% < ω(Х) < 100%)
где ω(X) – массовая доля компонента раствора X; m(X) – масса компонента раствора X; m – общая масса раствора.
Мольная доля χ компонента раствора равна отношению количества вещества данного компонента X к суммарному количеству вещества всех компонентов в растворе.
Для бинарного раствора, состоящего из растворённого вещества Х и растворителя (например, Н2О), мольная
доля растворённого вещества равна:
χ(X) = n(X)/(n(X) + n(H2O))
Мольный процент представляет мольную долю, умноженную на 100:
χ(X), % = (χ(X)·100)%
Молярность (молярная концентрация) C или Cм определяется
как отношение количества растворённого вещества X, моль к объёму раствора V, л:
Cм(Х) = n(Х)/V
Основной единицей молярности является моль/л или М. Пример записи молярной концентрации: Cм(H2SO4) = 0,8 моль/л или 0,8М.
Нормальность Сн определяется как отношение количества эквивалентов растворённого вещества X к объёму раствора V:
Cн(Х) = nэкв.(Х)/V
Основной единицей нормальности является моль-экв/л. Пример записи нормальной концентрации: Сн(H2SO4) = 0,8 моль-экв/л или
0,8н.
Титр Т показывает, сколько граммов растворённого вещества X содержится в 1 мл или в 1 см3 раствора:
T(Х) = m(Х)/V
где m(X) – масса растворённого вещества X, V – объём раствора в мл.
Моляльность раствора μ показывает количество растворённого вещества X в 1 кг растворителя:
μ(Х) = n(Х)/mр-ля
где n(X) – число моль растворённого вещества X, mр-ля – масса растворителя в кг.
Растворы – это однородные гомогенные системы, состоящие из частиц растворенного вещества, растворителя и продуктов их взаимодействия. Растворенное вещество равномерно распределено в растворителе. Раствор может состоять из двух и более компонентов.
Растворы бывают жидкие, твердые и газообразные. Растворитель – это то вещество, которое не изменяет агрегатное состояние при растворении. В случае смешения веществ с одинаковым агрегатным состоянием (жидкость-жидкость, газ-газ, твердое- твердое) растворителем считается тот компонент, содержание которого больше.
Образование раствора зависит от характера взаимодействия частиц растворителя и растворенного вещества, и их природы.
По |
способности |
растворяться вещества |
условно делят на: |
|
|
малорастворимые (от 0,001 до 1 грамма растворенного вещества на 100 грамм растворителя); растворимые (больше 1 г растворенного
вещества на 100 г растворителя); нерастворимые (менее 0,001 г растворенного вещества на 100 г растворителя).
По концентрации растворенного вещества растворы делят на: Ненасыщенные растворы – это растворы, в которых концентрация растворенного вещества меньше, чем в соответствующем насыщенном растворе, и в котором при данных условиях можно растворить еще некоторое количества растворенного вещества. Насыщенные растворы – это растворы, в которых достигнута максимальная концентрация растворенного вещества при данных условиях. Насыщенный раствор можно приготовить даже в бытовых условиях – например, раствор поваренной соли в воде. Если в стакан воды постепенно добавлять соль, рано или поздно соль перестанет растворяться. Это и будет насыщенный раствор. Пересыщенный раствор – это раствор, в котором концентрация растворенного вещества больше, чем в насыщенном. Избыток растворенного вещества легко выпадает в осадок. Приготовить пересыщенный раствор можно, например, с помощью охлаждения насыщенного раствора поваренной соли. При понижении температуры растворимость поваренной соли уменьшается, и раствор становится пересыщенным.
Термодинамика растворения
Согласно второму началу термодинамики при р, Т = = соnst вещества самопроизвольно могут растворяться в каком-либо растворителе, если в результате этого процесса энергия Гиббса системы уменьшается, т. е.
ΔG = (ΔН – ТΔS) < 0.
Величину ΔН называют энтальпийным фактором, а величину ТΔS – энтропийным фактором растворения.
При растворении жидких и твердых веществ энтропия системы обычно возрастает (ΔS > 0), так как растворяемые вещества из более упорядоченного состояния переходят в менее упорядоченное. Вклад энтропийного фактора, способствующий увеличению растворимости, особенно заметен при повышенных температурах, по–тому что в этом случае множитель Т велик и абсолютное значение произведения ТΔS также велико, соответственно возрастает убыль энергии Гиббса.
При растворении газов в жидкости энтропия системы обычно уменьшается (ΔS < 0), так как растворяемое вещество из менее упорядоченного состояния (большого объема) переходит в более упорядоченное (малый объем). Снижение температуры благоприятствует растворению газов, потому что в этом случае множитель Т мал и абсолютное значение произведения ТΔS будет тем меньше, а убыль энергии Гиббса тем больше, чем ниже значение Т.
В процессе образования раствора энтальпия системы также может как увеличиваться (NаСI), так и уменьшаться (КОН). Изменение энтальпии процесса растворения нужно рассматривать в соответствии с законом Гесса как алгебраическую сумму эндо– и экзотермических вкладов всех процессов, сопровождающих процесс растворения. Это эндотермические эффекты разрушения кристаллической решетки веществ, разрыва связи молекул, разрушения исходной структуры растворителя и экзотермические эффекты образования различных продуктов взаимодействия, в том числе сольватов.
