- •Foreword
- •Preface
- •Acknowledgements
- •Preamble
- •Contents
- •About the Authors
- •List of Figures
- •Abstract
- •1.1 Introduction
- •1.2 History of Soil Classification Systems
- •1.2.1 Soil Classification Systems
- •1.2.1.1 Australian Soil Classification System (2016)
- •1.2.1.2 Canadian Soil Classification System
- •1.2.1.3 Chinese Soil Taxonomy
- •1.2.1.4 England and Wales Soil Classification System
- •1.2.1.5 France Soil Classification System
- •1.2.1.6 Kuwait Soil Taxonomy Hierarchy
- •1.2.1.7 Norway Soil Classification System
- •1.2.1.8 Russian Soil Classification System
- •1.2.1.9 South African Soil Classification System
- •1.2.1.10 United Arab Emirates Keys to Soil Taxonomy
- •1.2.1.11 USDA-NRCS Keys to Soil Taxonomy
- •1.2.1.12 World Reference Base for Soil Resources (WRB Classification)
- •References
- •Abstract
- •2.1 Introduction
- •2.2 The Soil That We Classify
- •2.3 Lower Boundary of Soil
- •2.4 Nonsoil Materials
- •2.5 Buried Soils
- •References
- •Abstract
- •3.1 Introduction
- •3.2 Basic System of Horizon and Layer Designations
- •3.2.1 Master Horizons and Layers
- •3.2.2 Suffix Symbols
- •3.2.3 Conventions for Using Horizon Designation Symbols
- •3.2.4 Vertical Subdivisions
- •3.2.5 Discontinuities
- •3.2.6 The Prime Symbol
- •3.2.7 The Caret Symbol
- •3.3 Diagnostic Surface and Subsurface Horizons
- •3.3.1 The Epipedon
- •3.3.1.1 Ochric Epipedon
- •3.3.2 Diagnostic Subsurface Horizons
- •3.3.2.1 Anhydritic Horizon
- •3.3.2.2 Argillic Horizon
- •3.3.2.3 Calcic Horizon
- •3.3.2.4 Cambic Horizon
- •3.3.2.5 Gypsic Horizon
- •3.3.2.6 Petrocalcic Horizon
- •3.3.2.7 Petrogypsic Horizon
- •3.3.2.8 Salic Horizon
- •3.4 Diagnostic Soil Characteristics
- •3.4.1 Free Carbonates
- •3.4.2 Identifiable Secondary Carbonates
- •3.4.3 Aquic Conditions
- •3.4.4 Lithic Contact
- •3.4.5 Soil Moisture Regimes
- •3.4.5.1 Soil Moisture Control Section
- •3.4.5.2 Classes Soil Moisture Regimes
- •3.4.6 Soil Temperature Regimes
- •References
- •4 Families and Series Differentiae
- •Abstract
- •4.1 Introduction
- •4.2.1 Control Section for Particle-Size Classes
- •4.2.1.1 Root-Limiting Layers
- •4.2.1.3 Key to the Particle-Size and Substitute Classes
- •4.3 Mineralogy Classes
- •4.3.1 Control Section for Mineralogy Classes
- •4.3.2 Key to Mineralogy Classes
- •4.4.1 Use of the Cation-Exchange Activity Classes
- •4.4.3 Key to Cation-Exchange Activity Classes
- •4.5 Soil Temperature Class
- •4.5.1 Control Section for Soil Temperature
- •4.5.2 Key to Soil Temperature Class
- •4.6 Soil Depth Classes
- •4.6.1 Key to Soil Depth Classes
- •4.7 Series Differentiae Within a Family
- •4.7.1 Control Section for the Differentiation of Series
- •4.7.1.1 Key to the Control Section for the Differentiation of Series
- •References
- •Abstract
- •5.1 Introduction
- •5.2 Soil Orders Identified in Kuwait
- •5.2.1 Aridisols
- •5.2.2 Entisols
- •5.3 Understanding Soil Taxonomic Classes
- •5.4 Key to Soil Orders
- •5.5 Key to Suborders of Aridisols
- •5.5.1 Argids
- •5.5.2 Calcids
- •5.5.3 Cambids
- •5.5.4 Gypsids
- •5.5.5 Salids
- •5.6 Key to Suborders of Entisols
- •5.6.1 Orthents
- •5.6.2 Psamments
- •References
- •Abstract
- •6.1 Introduction
- •6.2 Soil Orders
- •6.2.1 Entisols
- •6.2.2 Aridisols
- •6.3 Soil Suborders
- •6.4 Soil Great Groups
- •6.5 Soil Subgroups
- •6.6 Soil Families
- •6.6.1 Families in the Soil Order Aridisols
- •6.6.2 Families in the Soil Order Entisols
- •6.7.1 Hypergypsic Mineralogy
- •6.7.2 Gypsic Mineralogy
- •6.7.3 Carbonatic Mineralogy
- •6.7.4 Mixed Mineralogy
- •6.7.5 Shallow
- •6.7.6 Coarse-Gypseous
- •6.7.7 Sandy-Skeletal
- •6.7.8 Sandy
- •6.7.9 Loamy
- •6.7.10 Coarse-Loamy
- •6.7.11 Fine-Loamy
- •6.7.12 Hyperthermic
- •References
- •Abstract
- •7.1 Introduction
- •7.2 Soil Samples Collection, Preparation and Processing
- •7.4 Coarse Fragments
- •7.5 Moisture Content
- •7.6 Loss on Acid Treatment (LAT)
- •7.9 Extractable Cations
- •7.11 Exchangeable Sodium Percentage (ESP)
- •7.12 Saturation Percentage (SP)
- •7.13 Preparation of Saturated Soil Paste
- •7.14 Saturation Extract Analysis
- •7.15 Electrical Conductivity of Soil Saturation Extract (ECe)
- •7.16 Osmotic Potential (OP)
- •7.17 Soil Reaction or Hydrogen Ion Activity (pH)
- •7.18 Sodium Adsorption Ratio (SAR)
- •7.19 Water Retention
- •7.20 Bulk Density (BD)
- •7.21 Particle Density (PD)
- •7.22 Porosity
- •7.23 Soil Organic Matter and Organic Carbon
- •7.24 Engineering Data
- •7.24.1 Atterberg Limits
- •7.24.1.1 Liquid Limit (LL)
- •7.24.1.2 Plastic Limit (PL)
- •7.24.1.3 Plasticity Index (PI)
- •7.24.2 Percent Passing Sieves
- •7.24.3 Unified Soil Classification System (USCS)
- •7.24.4 AASHTO Group Classification
- •7.25 Soil Mineralogy
- •7.26 Clay Mineralogy
- •7.26.1 X-Ray Diffraction Criteria
- •References
- •Author Index
2 |
1 Soil Classification Systems and Kuwait Soil Taxonomy Hierarchy |
|
|
become the focus of this publication. In other countries international systems (FAO; World Reference Base-WRB or Soil Taxonomy) were adapted to local edaphic conditions.
Keywords
Hierarchy Soil classification World Reference Base Soil taxonomy Kuwait
1.1Introduction
National soil inventory is important in the current situation, where, in 2050 it is likely that agrifood sector will face a momentous challenge to produce high quality and nutritious food to feed 9 billion peoples (Charles et al. 2010), that is 3 billion more mouths to feed than there were in 2010, while dealing with the impact of climate change on natural resources. Soil classification deals with the systematic categorization of soils based on distinguishing characteristics as well as criteria that dictate choices in use. It separates soil into classes or groups each having similar characteristics and potentially similar behavior. There exists number of soil classification systems. According to Food and Agriculture Organization-FAO, Soil classification concerns the grouping of soils with a similar range of properties (chemical, physical, mineralogical and biological) into units that can be geo-referenced and mapped. In the soil survey of Kuwait, we used United States Department of Agriculture-Natural Resources Conservation Service (USDA-NRCS) soil classifi- cation system, which has found widespread international acceptance particularly in countries in Latin America and Asia. The principles that were developed by Soil Taxonomy were taken up by World Reference Base (WRB) and the FAO Legend to set international standards.
1.2History of Soil Classification Systems
The earlier USDA soil classification (Baldwin et al. 1938) divided soils into three orders and was focused on the environment and the soil forming factors to classify soils in zonal, azonal and intrazonal soils. A later development focused on the processes occurring in the soil itself. These processes were roughly characterized by
