- •1. Классификация процессов микротехнологии
- •2. Чистота и микроклимат производственных помещений.
- •3. Классы чистоты материалов и веществ. Примеры.
- •4. Способы очистки поверхности пластин в микроэлектронном производстве.
- •5. Базовые операции планарной технологии.
- •6. Базовые операции изопланарной технологии.
- •7. Технология «кремний на изоляторе».
- •8. Уровни вакуума. Способы получения вакуума.
- •9. Приборы для измерения уровня вакуума.
- •10. Форвакуумные насосы.
- •11. Насосы для получения высокого и сверхвысокого вакуума.
- •12. Термическое вакуумное нанесение.
- •13. Методы осаждения вещества из газовой фазы.
- •14. Газофазная эпитаксия кремния: пиролиз, восстановление водородом.
- •17. Газофазное осаждение окислов и нитридов.
- •19. Магнетронное нанесение металлических слоёв.
- •20. Литографический процесс. Оценка качества и разрешения.
- •21. Литографический процесс. Негативный и позитивный резисты.
- •22. Фотошаблоны. Совмещение.
- •23. Последовательность операций стандартного фотолитографического процесса.
- •Подготовка пластин
- •Нанесение фоторезиста
- •Сушка фоторезиста
- •Проявление
- •Задубливание
- •Травление
- •24. Методы нанесения резистов. Адгезия.
- •25. Фотолитография. Способы экспонирования. Разрешающая способность.
- •26. Виды дефектов при проведении литографии.
- •28. Методы термического окисления кремния. Способы реализации и особенности.
- •30. Распределение примесей при термическом окислении
- •31. Физика диффузионных процессов. Двухстадийная диффузия.
- •32. Математическое описание диффузионных процессов в твердых телах. Законы диффузии.
- •33. Распределение примесей при диффузии. Стадия «загонки» (введение примесей).
- •34. Распределение примесей при диффузии. Стадия «разгонки» (перераспределение примесей).
- •35. Методы осуществления процесса диффузии. Источники и способы введения примесей. Оборудование для диффузии.
- •36. Математическое описание процесса ионной имплантации.
- •37. Физика процесса ионной имплантации. Эффекты разупорядочивания и каналирования.
- •39. Ионная имплантация. Процессы дефектообразования. Отжиг дефектов.
- •40. Применение методов ионной имплантации в микротехнологии. Легирование, окисление, нитрирование, протонизация.
- •41. Аппаратурная реализация процессов ионной имплантации.
- •43. Жидкостное химическое травление. Травители, стадии процесса, управление скоростью процесса.
- •44. Изотропное жидкостное травление кремния.
- •46. Плазменное и ионное травление.
- •47. Свойства материалов, необходимые для создания проводящих и изолирующих слоёв интегральных микросхем.
19.Магнетронное нанесение металлических слоёв.
Магнетронное распыление относится к методам распыления материалов ионной бомбардировкой. Технология магнетронной вакуумной металлизации основана на действии диодного газового разряда в скрещенных полях. В
процессе работы установки в плазме тлеющего заряда образуются ионы газа,
которые воздействуют на распыляемое вещество.
Характер взаимодействия бомбардирующих ионов с поверхностью твердого тела определяется их энергией. При энергиях меньших 5 эВ,
взаимодействие ограничивается физически и химически адсорбированными слоями, вызывая их десорбцию и обуславливая протекание различных химических реакций. При кинетических энергиях, превышающих энергию связи атомов в кристаллической решетке, бомбардировка вызывает разрушение приповерхностного слоя и выброс атомов в паровую фазу
(распыление). Минимальная энергия ионов, приводящая к выбиванию атомов с поверхности, называется пороговой энергией распыления. Значение ее находится в интервале энергий от 15 до 30 эВ.
Характеристикой процесса ионного распыления служит коэффициент распыления, определяемый средним количеством атомов мишени, выбитых с бомбардируемой поверхности падающим ионом:
|
|
|
K |
|
|
N |
t |
, |
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
S |
|
N |
|
|
|
|
|
|
|
|
|
|
|
i |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
где |
N |
t |
– количество выбитых |
атомов мишени, |
N |
i |
– количество |
||||
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
||
бомбардирующих атомов.
При возрастании энергии бомбардирующих ионов свыше 100 эВ коэффициент распыления резко увеличивается и в области 5 – 10 кэВ выходит на насыщение. Дальнейшее повышение кинетической энергии свыше 100 кэВ приводит к снижению распыления, вызванному радиационными эффектами и внедрениями ионов в кристаллическую решетку. Диапазон энергий бомбардирующих ионов, представляющих интерес при получении пленок,
находится в пределах от 300 до 5000 эВ. Распыление вызывается передачей
импульса энергии от бомбардирующей частицы атомам кристаллической решетки в результате серии последовательных столкновений. Передача импульса от падающих ионов происходит в первых атомных слоях решетки,
например, при бомбардировке поверхности поликристаллической меди ионами аргона с энергией 1000 эВ глубина проникновения равнялась трем атомным слоям. Энергия распыления атомов значительно превышает кинетическую энергию испаренных атомов и составляет 0,1 – 100 эВ.
Распыление сопровождается эмиссией вторичных электронов, которые ускоряются в электрическом поле, вызывая дополнительную ионизацию.
Наибольшее распространение в качестве источника бомбардирующих ионов получил инертный газ аргон (Ar), имеющий массу, достаточную для распыления, и характеризующийся относительно малой стоимостью. Влияние температурных условий незначительно.
Распыление металлов в твердом и расплавленном состояниях практически не различается. Исключение составляет область температур, при которых переход атомов в паровую фазу путем испарения становится существенным и превышает распыление. Необходимо заметить, что с увеличением угла падения ионов (относительно нормали к поверхности)
эффективность распыления возрастает.
Схема магнетронной распылительной системы:
6 |
7 |
3 |
5 |
|
|
|
4 |
- |
+ |
|
- |
|
N |
S |
N |
|
2 |
1 |
Основные элементы:
1– Катод-мишень (изготовлен из напыляемого материала)
2– Магнитная система (обычно на основе постоянных магнитов)
3– Источник питания
4– Анод
5– Траектория движения электрона
6– Зона распыления
7– Силовые линии магнитного поля
Наиболее часто используются электродная система с кольцевым
(коническим) катодом, который называется S-пушка, и планарная электродная система. Скорость распыления при использовании конического магнетрона пропорциональна косинусу угла между направлением пучка распыляемого материала и нормалью к подложке (для увеличения производительности может использоваться планетарная система расположения подложек относительно источника распыляемого материала. В планарном магнетроне пластины помещаются на плоскости перед магнетроном, причем источник может иметь изменяющиеся размеры, так что возможно значительное увеличение производительности устройства.
При подаче постоянного напряжения между мишенью (отрицательный потенциал) и анодом (положительный потенциал) возникает неоднородное электрическое поле и возбуждается тлеющий разряд. Наличие замкнутого
магнитного поля к распыляемой поверхности мишени позволяет локализовать плазму разряда непосредственно у мишени. Электрон циркулирует в электромагнитной ловушке до тех пор, пока не произойдет несколько ионизирующих столкновений с атомами рабочего газа, в результате которых он потеряет полученную от электрического поля энергию. Таким образом, в
магнетронных устройствах при одновременном действии электрических и магнитных полей изменяется траектория движения электрона. Известно, что на заряд, движущийся в электромагнитном поле, действует сила Лоренца,
направление которой, по правилу сложения сил, зависит от направления ее составляющих. При этом, часть силы Лоренца, обусловленная действием магнитного поля, не совершает работы, а лишь искривляет траекторию движения частицы, заставляя ее двигаться по окружности в плоскости,
перпендикулярной V и B. Таким образом, большая часть энергии электрона,
прежде чем он попадает на анод, используется на ионизацию и возбуждение,
что значительно увеличивает эффективность процесса ионизации и приводит к возрастанию концентрации положительных ионов у поверхности мишени.
Это, в свою очередь, приводит к увеличению интенсивности ионной бомбардировки мишени и значительный рост скорости осаждения пленок. Из-
за неоднородности действия электрических и магнитных полей в прикатодной зоне интенсивность ионизации в различных участках различна. Максимальное значение наблюдается в области, где линии индукции магнитного поля перпендикулярны вектору напряженности электрического поля, минимальное
– где их направление совпадает.
Скорость образования слоя зависит от силы тока и давления рабочего газа. Ток может быть и переменным, и постоянным.
Поверхность мишени, расположенная между входом и выходом силовых линий магнитного поля, интенсивно распыляется и имеет вид замкнутой дорожки, геометрия которой определяется формой магнитной системы
Преимущества магнетронного метода:
1)Высокая производительность
2)Точность химического состава осажденного вещества
3)Равномерность покрытия
4)Отсутствие термического воздействия на обрабатываемую
заготовку
5)Возможность использования любых металлов и полупроводниковых материалов
Использование магнетронного распыления позволяет проводить нанесение металла с высокой скоростью. При этом напряжение магнетронных источников обычно ниже, чем электронно-лучевых устройств, следовательно,
они генерируют меньшее проникающее излучение. Скорость осаждения может регулироваться расстоянием между источником и подложкой и достигать 1 мкм/мин при осаждении алюминия или его сплавов. Установки магнетронного типа обычно оснащены микропроцессорными системами управления, которые действуют по заданным программам. Системы управления позволяют проводить корректировку программ,
перепрограммирование, изменение параметров процесса, а также соединять конкретную установку с большими управляющими комплексами.
Регулируются основные параметры технологического процесса: временные характеристики операций откачки камеры, напуска рабочего газа, нагрева подложек, ионной очистки поверхности подложек, процесса распыления; а
также мощность магнетрона; скорость движения карусели с подложками.
Загрузка и выгрузка пластин могут осуществляться как оператором, так и (в
некоторых устройствах) автоматически. Причем заданные и текущие значения параметров в процессе распыления могут контролироваться с помощью экрана дисплея. Хотя магнетронные системы испарения металлов значительно сложнее в изготовлении и эксплуатации, чем вакуумно-термические, в
условиях современного производства они являются наиболее совершенными,
обеспечивающими необходимые качества и производительность при нанесении металлических тонких пленок.
