- •1. Государственная система промышленных приборов и средств автоматизации
- •2. Основные термины и определения метрологии
- •2.1. Физические величины
- •2.2. Единицы физических величин
- •2.3. Измерения физических величин
- •2.4. Средства измерительной техники
- •2.5. Принципы, методы и методики измерений
- •2.6. Условия измерений
- •2.7. Результаты измерений физических величин
- •2.8. Погрешности измерений
- •4. Измерительные преобразователи
- •4.1. Структура измерительного преобразователя
- •4.3. Промежуточные преобразователи
- •4.3.3. Пьезоэлектрические преобразователи
- •4.3.4. Индуктивные преобразователи
- •4.3.5. Преобразователи электрических сигналов
- •4.4.3. Электропневматический преобразователь
- •4.4.4. Токовый унифицированный преобразователь
- •4.4.5. Пневматический унифицированный преобразователь
- •4.5. Аналоговые и цифровые преобразователи
- •6. Измерение давления
- •6.1. Жидкостные манометры
- •6.2. Деформационные преобразователи давления
- •7. Измерение температуры
- •7.1. Общие сведения об измерении температуры
- •7.2. Измерение температуры контактным методом
- •7.2.1. Термометры расширения
- •7.2.2. Манометрические термометры
- •7.2.3. Термоэлектрические преобразователи
- •7.2.5. Пьезоэлектрические термопреобразователи
- •7.3. Измерение температуры бесконтактным методом
- •7.3.2. Яркостные пирометры
- •7.3.3. Пирометры спектрального отношения
- •7.3.4. Пирометры полного излучения
- •8. Измерение расхода
- •8.1. Расходомеры переменного перепада давления
- •8.1.1. Измерение расхода по перепаду давлений на сужающем устройстве
- •8.1.2. Измерение расхода с помощью напорных трубок
- •8.2. Расходомеры постоянного перепада давления
- •8.3. Объемные расходомеры и счетчики
- •8.3.1. Счетчики с овальными шестернями
- •8.3.2. Ротационные счетчики
- •8.3.3. Скоростные счетчики
- •8.4. Измерение расхода на основе тепловых явлений
- •8.4.2. Термоконвективные расходомеры
- •8.4.3. Термоанемометры
- •8.5. Электромагнитные расходомеры
- •8.6. Вихревые расходомеры
- •8.7. Ультразвуковые расходомеры
- •8.8. Кориолисовы расходомеры
- •9. Измерение уровня жидкости и сыпучих тел
- •9.1. Механические уровнемеры
- •9.2. Гидростатические и пьезометрические уровнемеры
- •9.3. Кондуктометрические уровнемеры
- •9.4. Емкостные уровнемеры
- •9.5. Фотоэлектрические уровнемеры
- •9.6. Ультразвуковые уровнемеры
- •9.7. Измерение уровня с помощью радиоактивных изотопов
- •9.8. Акустические уровнемеры
- •10. Измерение состава и физико-химических свойств веществ
- •10.1. Физические газоанализаторы
- •10.1.2. Термохимические газоанализаторы
- •10.2. Измерение концентрации растворов
- •10.2.3. Денсиметрические анализаторы
- •10.2.4. Ультразвуковые анализаторы
- •10.3. Химические газовые сенсоры
9.3. Кондуктометрические уровнемеры
Кондуктометрические уровнемеры применяются для измерения уровня электропроводящих жидкостей в резервуарах, цистернах. Принцип измерения основан на изменении силы тока от изменения контролируемого уровня жидкости в резервуаре. В пустом резервуаре сопротивление между двумя электродами бесконечно велико. Если опустить электроды в электропроводящую жидкость в резервуаре, уровень которой измеряется, то изменение проводимости отражает ее уровень.
Примечание
Ток, проходящий через жидкость, должен быть мал для исключения электролиза (или взрыва).
9.4. Емкостные уровнемеры
Рис. 101. Схема емкостного уровнемера:
1 —
трубчатый (наружный) электрод; 2
— внутренний
электрод; 3
— преобразователь
емкости
в
токовый
сигнал
Их действие основано на измерении электрической емкости преобразователя, изменяющейся пропорционально изменению контролируемого уровня жидкости в резервуаре. Преобразователь, преобразующий изменение уровня жидкости в пропорциональное изменение емкости, представляет собой цилиндрический конденсатор, электроды которого расположены коаксиально (рис. 101). Для каждого значения уровня жидкости в резервуаре емкость первичного преобразователя определяется как емкость двух параллельно соединенных конденсаторов, один из которых образован частью электродов преобразователя и жидкостью, уровень которой измеряется, а второй — остальной частью электродов емкостного преобразователя и воздухом (или парами жидкости). Измерение емкости осуществляют уравновешенными мостами переменного тока.
Замечание
Если жидкость находится в металлической емкости, то ее можно использовать в качестве одного из электродов емкостного преобразователя.
Емкостный метод применяют для измерения уровня песка, цемента, извести, угольной пыли в бункерах и хранилищах, а также мазута, топлива, воды, кислот, щелочей и вязких материалов.
9.5. Фотоэлектрические уровнемеры
Фотоэлектрические уровнемеры применяются только для измерения дискретных уровней жидкости. Первый вариант измерения уровня жидкости фотоэлектрическими преобразователями (рис. 102, а):
Рис. 102. Схемы фотоэлектрического уровнемера с разделенным (а) и совмещенным (б) расположением фотоэлектрического источника света 1 и светодетектора 2
фотоэлектрические источник света / и детектор 2 разделены, поэтому луч света (а также излучение ультрафиолетовое, инфракрасное) между ними прерывается, если уровень жидкости превышает высоту установки этих преобразователей. Практически луч света полностью не прерывается, а лишь ослабляется.
Второй вариант измерения уровня жидкости фотоэлектрическими преобразователями: фотоэлектрические источник света, детектор и призма размещаются в одном корпусе (рис. 102, б). Свет от фотоэлектрического источника отражается от внутренней поверхности призмы и попадает на светодетектор в том случае, когда фотоэлектрический преобразователь находится в газовой среде. Если жидкость покрыла корпус фотоэлектрического преобразователя, индекс отражения между призмой и окружающей средой изменится, и луч света не будет отражаться от призмы к светодетектору.
Примечание
Свет представляет собой электромагнитное излучение. Видимый свет — это излучение в диапазоне длин волн, воспринимаемых человеческим глазом (от 380 до 780 нм). Излучение в диапазоне длин волн 10...380 нм называют ультрафиолетовым излучением (или просто ультрафиолетовым светом); излучение в диапазоне длин волн 780...3000 нм — инфракрасным излучением (или просто инфракрасным светом).
