Добавил:
yurochka
Периодически делаю учебные работы по предметам ЛЭТИ и выгружаю их сюда для пополнения базы, с которой можно будет свериться.
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз:
Предмет:
Файл:Лабораторная 3 / Вариант_Бета-распределение / Lab3 (1)
.pyimport random
import math
import matplotlib.pyplot as plt
import numpy as np
import time
class MyRandom:
def __init__(self, r, K, A, c, m):
self.r = r
self.K = K
self.A = A
self.c = c
self.m = m
if (len(K) != r or len(A) != r):
raise Exception
def next(self):
x = sum([self.K[i] * self.A[i] for i in range(self.r)]) % self.m
self.A.pop(0)
self.A.append(x)
return x / self.m
def gamma_variate(k): # Г(k, 1)
if k <= 0:
raise ValueError("k must be > 0")
if k < 1.0:
u = rand.next()
return gamma_variate(k + 1.0) * (u ** (1.0 / k))
d = k - 1.0 / 3.0
c = 1.0 / math.sqrt(9.0 * d)
while True:
u1 = rand.next()
u2 = rand.next()
z = math.sqrt(-2.0 * math.log(u1)) * math.cos(2.0 * math.pi * u2)
v = 1.0 + c * z
if v <= 0:
continue
v = v ** 3
u = rand.next()
if u < 1.0 - 0.0331 * (z ** 4):
return d * v
if math.log(u) < 0.5 * z * z + d * (1.0 - v + math.log(v)):
return d * v
def beta_variate(alpha, beta):
if alpha <= 0.0 or beta <= 0.0:
raise ValueError("alpha, beta must be > 0")
x = gamma_variate(alpha)
y = gamma_variate(beta)
return x / (x + y)
N = 10000
X = []
random.seed(time.time())
r = 8
K = [random.randint(0, 2000) for _ in range(r)]
A = [random.randint(0, 2**16) for _ in range(r)]
rand = MyRandom(r, K, A, 946785, 2**32)
# Exponential
print("Exponential")
lambda_exp = 0.5
X.clear()
for i in range(N):
z = rand.next()
X.append(-1 / lambda_exp * math.log(z))
M_expected = 1 / lambda_exp
D_expected = 1 / (lambda_exp ** 2)
M = sum(X) / N
D = sum([x ** 2 for x in X]) / N - M ** 2
M_delta = abs((M - M_expected) / M_expected) * 100
D_delta = abs((D - D_expected) / D_expected) * 100
print(f"Эмпирические: {M = :.3f}, {D = :.3f}")
print(f"Теоретические: M = {M_expected:.3f}, D = {D_expected:.3f}")
print(f"Относительные погрешности: δM = {M_delta:.2f} %, δD = {D_delta:.2f} %")
plt.hist(X, bins=30, weights=np.ones_like(X) / len(X))
plt.savefig("ms3.exponential.svg")
plt.show()
# Uniform
print("\nUniform")
A_uni = -4
B_uni = 10
X.clear()
for i in range(N):
z = rand.next()
X.append(A_uni + (B_uni - A_uni) * z)
M_expected = A_uni + (B_uni - A_uni) / 2
D_expected = (B_uni - A_uni) ** 2 / 12
M = sum(X) / N
D = sum([x ** 2 for x in X]) / N - M ** 2
M_delta = abs((M - M_expected) / M_expected) * 100
D_delta = abs((D - D_expected) / D_expected) * 100
print(f"Эмпирические: {M = :.3f}, {D = :.3f}")
print(f"Теоретические: M = {M_expected:.3f}, D = {D_expected:.3f}")
print(f"Относительные погрешности: δM = {M_delta:.2f} %, δD = {D_delta:.2f} %")
plt.hist(X, bins=B_uni*8, weights=np.ones_like(X) / len(X))
plt.savefig("ms3.uniform.svg")
plt.show()
# Erlang
print("\nErlang")
k_erl = 6
lambda_erl = 0.5
X.clear()
for i in range(N):
X.append(-1 / lambda_erl * math.log(math.prod(rand.next()
for j in range(k_erl))))
M_expected = k_erl / lambda_erl
D_expected = k_erl / (lambda_erl ** 2)
M = sum(X) / N
D = sum([x ** 2 for x in X]) / N - M ** 2
M_delta = abs((M - M_expected) / M_expected) * 100
D_delta = abs((D - D_expected) / D_expected) * 100
print(f"Эмпирические: {M = :.3f}, {D = :.3f}")
print(f"Теоретические: M = {M_expected:.3f}, D = {D_expected:.3f}")
print(f"Относительные погрешности: δM = {M_delta:.2f} %, δD = {D_delta:.2f} %")
plt.hist(X, bins=30, weights=np.ones_like(X) / len(X))
plt.savefig("ms3.erlang.svg")
plt.show()
# Standard Normal
print("\nStandard Normal")
X.clear()
for i in range(N // 2):
z1 = rand.next()
z2 = rand.next()
X.append(math.sqrt(-2 * math.log(z1)) * math.cos(2 * math.pi * z2))
X.append(math.sqrt(-2 * math.log(z1)) * math.sin(2 * math.pi * z2))
M_expected = 0
D_expected = 1
M = sum(X) / N
D = sum([x ** 2 for x in X]) / N - M ** 2
D_delta = abs((D - D_expected) / D_expected) * 100
print(f"Эмпирические: {M = :.3f}, {D = :.3f}")
print(f"Теоретические: M = {M_expected:.3f}, D = {D_expected:.3f}")
print(f"Относительные погрешности: δD = {D_delta:.2f} %")
plt.hist(X, bins=40, weights=np.ones_like(X) / len(X))
plt.subplots_adjust(top=0.99, bottom=0.08, left=0.08, right=0.92)
plt.savefig("ms3.normal.svg")
plt.show()
# Beta
print("\nBeta")
alpha = 0.5
beta = 0.5
X = [beta_variate(alpha, beta) for _ in range(N)]
M_expected = alpha / (alpha + beta)
D_expected = (alpha * beta) / ((alpha + beta) ** 2 * (alpha + beta + 1))
M = sum(X) / N
D = sum([x ** 2 for x in X]) / N - M ** 2
M_delta = abs((M - M_expected) / M_expected) * 100
D_delta = abs((D - D_expected) / D_expected) * 100
print(f"Эмпирические: {M = :.3f}, {D = :.3f}")
print(f"Теоретические: M = {M_expected:.3f}, D = {D_expected:.3f}")
print(f"Относительные погрешности: δM = {M_delta:.2f} %, δD = {D_delta:.2f} %")
plt.hist(X, bins=40, weights=np.ones_like(X) / len(X))
plt.savefig("ms3.Beta.svg")
plt.show()
Соседние файлы в папке Вариант_Бета-распределение
