Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Математические олимпиады БПИ–БГПА–БНТУ.pdf
Скачиваний:
0
Добавлен:
28.12.2025
Размер:
4.98 Mб
Скачать

7.2.Математическая олимпиада БПИ 1986 года (II тур)

1.Пусть l1, l2 , l3 , l4 – лучи, исходящие из одной точки трёхмерного пространства,

mn – угол между лучами lm и ln . Показать, что det (cos ij )4 4 0. (3 балла)

Решение. Пусть e1, e2 , e3 , e4 – единичные векторы, направленные вдоль соответствующих лучей. Тогда cos ij ei e j и, значит, det (cos ij )4 4 det (ei e j )4 4. Четыре вектора линейно зависимы в трёхмерном пространстве. Пусть, например, e4 1e1 2 e2 3 e3 , где

1, 2 , 3 – некоторые действительные числа. Тогда искомый определитель распадается на сумму трёх определителей с пропорциональными столбцами. Эти определители равны нулю, следовательно, det (cos ij )4 4 0.

2. По внешней стороне эллипса катится колесо радиуса 1 (Примечание: все фигуры ле-

жат в одной плоскости). Будет ли эллипсом траектория, описываемая центром колеса?

Составить блок-схему и программу вычисления приближённого значения с точностью длины этой траектории, считая полуоси эллипса a и b известными. (6 баллов)

Решение.

A1C1B1

A B

Пусть AB – малая дуга эллипса, A1B1 – соответствующая дуга линии, описываемой центром колеса (эквидистанты эллипса). Обозначим через l длину дуги AB, через L – длину

дуги A1B1, а через Δφ – угол B1BC1. Тогда L

l + Δφ и, следовательно, переходя к диффе-

ренциалам, dL = dl + dφ, откуда

 

L = l + 2π.

(1)

Покажем, пользуясь этой зависимостью, что эквидистанта не может быть эллипсом. В самом деле, если бы это было так, то, очевидно, это был бы эллипс с полуосями a + 1 и b + 1 и, значит, его длина была бы равна

2

 

L

(a 1)2 sin 2 t (b 1)2 cos2 t dt.

0

 

По формуле же (1)

 

 

44

 

 

 

2

 

 

 

L

a2 sin2 t b2 cos2 t dt 2 .

 

 

 

0

 

Убедимся в том, что

a2 sin 2 t b2

cos2 t 1 (a 1)2 sin 2 t (b 1)2 cos2 t, что и приведёт к про-

тиворечию.

После

возведения

в

квадрат обеих частей неравенства, мы получим

a2 sin 2 t b2

cos2 t a2 sin 2 t b2 cos2 t, а после повторного возведения в квадрат и последу-

ющего преобразования придём к верному неравенству (a2 b2 )sin2 t cos2 t 2absin2 t cos2 t. Таким образом, эквидистанта эллипса не может быть эллипсом.

Для приближённого вычисления длины эквидистанты следует воспользоваться форму-

лой (1), вычислив длину эллипса с заданной точностью .

Для этого можно использовать,

например, метод парабол, программирование которого не представляет трудностей.

 

 

Ответ. Нет.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

x

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Найти предел lim cos

 

sin

 

 

 

 

. (2 балла)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

n

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

cos

 

sin

 

1

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

n

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

x

 

cos

x

 

sin

x

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lim cos

 

sin

 

 

(1 ) lim

 

1

cos

 

 

sin

 

 

1

 

 

n

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

n

 

n

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

n

 

 

 

 

2

x

 

n

 

 

 

 

 

 

x

 

 

x2

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lim exp sin

 

 

 

 

 

2sin

 

 

 

 

 

 

 

lim exp

 

 

 

 

 

 

 

 

e

 

.

 

 

 

 

 

 

 

 

 

 

 

2n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

2n

 

 

 

 

 

 

 

 

 

 

Ответ. e x .

4. Точки A и B расположены в различных оптических средах, отделённых друг от друга прямой линией. Скорость распространения света в первой среде равна v1, во второй – v2.

Пользуясь принципом Ферма, согласно которому световой луч распространяется вдоль той ломаной AMB, для прохождения которой требуется минимум времени, вывести закон преломления светового луча. (4 балла)

Решение. Пусть и – углы падения и преломления светового луча, соответственно.

45

A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

B

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A1

 

M

 

 

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Так как AM

 

 

a

 

,

BM

 

 

 

b

 

,

то общее время прохождения светового луча равно

 

cos

cos

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

a

 

 

 

 

b

 

 

.

Кроме того,

A1M B1M A1B1 a tg b tg A1B1 0. Получили за-

 

 

 

 

 

 

 

v1 cos

v2 cos

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

дачу на условный экстремум для функции времени t. Функция Лагранжа этой задачи:

L( , , )

 

 

 

a

 

b

 

 

(a tg b tg A1B1). В критической точке этой функции

 

 

 

 

 

 

 

 

v1 cos

v2 cos

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

необходимо

L

( , ,

) 0, L ( , , ) 0.

 

Отсюда, поскольку

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L

( , , )

 

a sin

 

a

 

,

 

L ( , , )

 

bsin

 

b

 

,

 

 

 

 

 

 

 

 

 

cos2

cos2

 

 

cos2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v

 

 

 

 

 

 

 

v

2

cos2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

мы получаем:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a sin

 

a

0,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v cos2

 

cos2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bsin

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v2 cos

 

 

 

 

 

 

 

 

 

 

 

 

Исключив из этой системы параметр , мы получим закон преломления света:

sin sin . v1 v2

Ответ. sin sin . v1 v2

sin nx

5.Вычислить интеграл sin x dx. (4 балла)0

Решение. Обозначим искомый интеграл через I n . Очевидно, I0 0, I1 . При n 2

46

sin(n 1)x cos x sin x cos(n 1)x

 

 

 

 

 

 

sin(n 1)x cos x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In

 

 

 

 

 

 

 

 

 

 

sin x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dx

 

 

 

 

 

 

sin x

 

 

 

 

 

 

dx

cos(n 1)xdx

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

sin nx sin(n 2)x

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dx

 

 

 

 

 

 

sin(n 1)x

 

 

 

 

 

 

(In

In 2 ).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

sin x

 

 

 

 

 

 

 

 

n 1

0

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Отсюда,

In In 2 . Значит, при n чётном In

 

 

I0

0. Если же n нечётно, то In

I1 .

 

 

 

 

 

 

 

 

 

 

sin nx

 

 

 

 

, n 2k 1;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ответ.

 

sin x

dx

0, n 2k.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Найти все дважды непрерывно дифференцируемые решения уравнения

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y(x) sin t y(t)dt d cost y(t)dt 2. (3 балла)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение. Из уравнения находим y(0) 2. Дифференцируя обе части данного инте-

 

грального уравнения, приходим к уравнению:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y (x) y(x)sin x x cost y(t)dt 0.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Отсюда,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(0) 0. Повторное дифференцирование даёт дифференциальное уравнение вто-

 

рого порядка

y

 

x

)

y x

)sin

x

0 с найденными выше начальными условиями. Разделив в

 

 

 

(

 

 

(

 

 

 

 

 

этом уравнении переменные, получим

 

dy (x)

 

sin x dx,

откуда после интегрирования нахо-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y (x)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

дим: y (x) C ecosx , C постоянная. Следовательно,

 

y (0) C e 0

C 0. Значит,

 

 

 

 

 

 

 

 

 

1

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

y (x) 0 y(x) C2

и, так как

 

 

y(0) C2

2, то единственным решением данного уравне-

ния является функция y(x) 2.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ответ.

 

y(x) 2.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. Найти сумму ряда

 

 

 

 

 

. (3 балла)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n 2 n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение. Обозначим an

 

 

 

 

1

 

.

 

Так как

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n3 n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

1

 

 

 

 

 

 

 

 

1 1

 

 

 

 

 

 

 

1

 

 

 

1

 

 

 

 

1

 

 

1

 

 

 

 

1

 

1

 

 

 

 

1

 

1

 

1

 

 

an

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,

 

(n

1)n(n

1)

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

n 1

n 1

 

 

 

 

 

1

2

 

 

 

 

 

 

 

 

n 1

 

 

 

 

 

n

 

 

 

 

 

n n 1

 

 

 

 

 

 

n n

 

 

n 1

 

 

 

n 1

 

n

 

 

 

n

 

 

 

 

 

 

1

 

 

1

 

1

 

 

 

 

1

 

 

 

 

 

1

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

то An ak

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

Следовательно,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

2

 

 

 

 

 

 

1

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k 2

 

 

 

 

 

 

n n

 

 

 

 

 

 

n

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

1

 

 

 

1

 

 

 

 

 

1

 

 

 

1

 

 

 

 

1

 

 

 

 

 

1

 

1

 

1

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lim An lim

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

n

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

2 n n 1

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

2 2 4

 

 

 

 

 

 

 

n 2 n

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

n 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

47

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ответ. 14 .

8. Определить вид кривой, радиус кривизны которой пропорционален длине нормали, в

случае коэффициента пропорциональности k 1, 1, 2. (5 баллов)

Решение. По условию R k n, где R (1 y 2 )3/ 2 радиус кривизны кривой, заданной y

уравнением y y(x), n y 1 y 2 нормаль к кривой. Значит, для нахождения уравнений

кривых следует интегрировать следующее неполное дифференциальное уравнение второго порядка: 1 y 2 kyy . Подстановкой y z(y) оно сводится к дифференциальному уравне-

нию первого порядка с разделяющимися переменными kyzz 1 z 2 , интегрирование кото-

рого даёт (1 z2 )k C2 y2. Рассмотрим три случая.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1) k = 1. Здесь мы имеем уравнение 1 z 2

C12 y2 y

C12 y2 1. Отсюда,

 

 

dy

 

 

x C2. Проведём в интеграле замену переменной C1 y cht. В результате по-

 

 

 

 

 

C 2 y2

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

лучим

1

t x C

2

и, значит,

y

 

1

ch C (x C

2

) . Графиками этих функций являются цеп-

 

 

 

 

 

 

C1

 

 

 

 

 

 

C1

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ные линии.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 C 2 y

2

 

 

C ydy

 

 

 

2) k = –1. В этом случае (1 z 2 ) 1 C 2 y2

y

 

1

 

 

1

x C

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

C1 y

 

 

1 C 2 y2

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

Выполнив интегрирование, мы получим следующее уравнение интегральных кривых:

 

(x C2 )2

y2

1

.

Это окружности.

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3) k = 2. Здесь (1 z2 )2 C2 y2

 

и, стало быть,

y

C y 1. Проведя интегрирование,

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

мы найдём уравнения: (x C

 

 

 

 

4

 

1

 

Таким образом, в этом случае интегральными

2

)2

 

 

y

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C1

 

 

 

 

 

 

 

 

 

 

 

 

кривыми являются параболы.

Ответ. Искомыми кривыми являются, соответственно, цепные линии, окружности, параболы.

48