Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

-_7-07~1

.PDF
Скачиваний:
0
Добавлен:
28.12.2025
Размер:
4.85 Mб
Скачать

 

 

РАЗДЕЛ МЕТРОЛОГИЯ

неисключенные систематические погрешности, представленные заданными гра-

ницами , распределены равномерно.

~

 

 

 

За результат однократного измерения

A

принимают значение величины,

 

полученное при измерении.

На этапе перехода от погрешности к неопределенности целесообразно указывать характеристики и погрешности, и неопределенности результата измерения.

Составляющие погрешности результата измерения должны быть известны до проведения измерения. Предполагают, что известные систематические погрешности исключены (внесены поправки на все известные источники неопределенности, имеющие систематический характер).

Полагают, что распределение случайных погрешностей не противоречит нормальному распределению, а неисключенные систематические погрешности, представленные заданными границами , распределены равномерно.

Неопределенность результата измерений понимают, как неполное знание значения измеряемой величины, и для количественного выражения этой неполноты вводят распределение вероятностей возможных значений измеряемой величины - параметр, который количественно характеризует точность результата измерений. Полагают, что распределение вероятностей возможных значений измеряемой величины не противоречит нормальному распределению.

В целях количественного выражения неопределенности результата измерения, представленной в виде границ отклонения значения величины от ее оценки [- + ] (неполное знание о значении величины), полагают, что распределение возможных значений измеряемой величины в указанных границах не противоречит равномерному распределению.

Выполнение однократных измерений обосновывают следующими факторами:

-производственной необходимостью (разрушение образца, невозможность повторения измерения, экономическая целесообразность и т.д.);

-возможностью пренебрежения случайными погрешностями;

-случайные погрешности существенны, но доверительная граница погрешности результата измерения не превышает допускаемой погрешности измерений;

-стандартная неопределенность, оцениваемая по типу А, существенна, но расширенная неопределенность не превышает заданного предела.

Примечания:

1 Случайные погрешности считают пренебрежимо малыми по сравнению с неисключенными систематическими, если:

 

8

,

~

S( A)

 

 

где - граница НСП результата измерения;

(1.107)

111

РАЗДЕЛ МЕТРОЛОГИЯ

~ S( A ) - СКО случайных погрешностей результата измерения.

2 Неопределенность, оцениваемую по типу А, считают пренебрежимо малой по сравнению с неопределенностью, оцениваемой по типу В, если выполняется условие:

uВ

3

8

,

(1.108)

uА

 

 

 

 

 

где и - стандартные неопределенности, оцениваемые по типам А и В соответственно.

При определении доверительных границ погрешности или расширенной неопределенности для уровня доверия результата измерения принимают вероятность, равную 0,95.

В особых случаях, например при измерениях, которые нельзя повторить, допускается указывать доверительные границы или расширенную неопределенность для уровня доверия P и более высоких вероятностей.

При вычислениях следует пользоваться правилами округления в соответствии с МИ 2083. Доверительные границы погрешности (характеристики погрешности) и расширенная неопределенность (расширенная неопределенность для уровня доверия P) результата измерения должны быть представлены не более чем двумя значащими цифрами.

Составляющие погрешности и неопределенности результата измерения

Составляющими погрешности результата однократного измерения являются погрешности СИ, метода, оператора, а также погрешности, обусловленные изменением условий измерения.

Погрешность результата однократного измерения чаще всего представлена НСП и случайными погрешностями.

Неопределенность результата однократного измерения может быть представлена стандартными неопределенностями, оцениваемыми по типам А и В. Характеристикой НСП могут быть:

-границы ;

-доверительные границы (P).

Характеристикой случайных погрешностей могут быть:

-СКО S;

-доверительные границы (P).

Погрешность СИ определяют на основании их метрологических характеристик, которые должны быть указаны в нормативных и технических документах, и в соответствии с РД 50-453-84.

Погрешности метода и оператора должны быть определены при разработке и аттестации конкретной МВИ.

Оценивание неисключенной систематической погрешности и стандартной неопределенности, оцениваемой по типу В, результата измерения

НСП результата измерения выражают границами этой погрешности, если

112

РАЗДЕЛ МЕТРОЛОГИЯ

среди составляющих погрешности результата измерения в наличии одна НСП. При указанном выше условии стандартную неопределенность , обуслов-

ленную неисключенной систематической погрешностью, заданной своими границами , оценивают по формуле (2).

Доверительные границы НСП результата измерения вычисляют следующим образом.

При наличии нескольких НСП, заданных своими границами , довери-

тельную границу НСП результата измерения (P).(без учета знака) вычисляют по формуле:

(P) k

m 2 j

i 1

,

(1.109)

где k - поправочный коэффициент, определяемый принятой доверительной вероятностью и числом m составляющих j.

При доверительной вероятности Р = 0,95 поправочный коэффициент k принимают равным 1,1.

При доверительной вероятности Р = 0,99поправочный коэффициент k принимают равным 1,45, если число суммируемых составляющих m>4. Если же число составляющих равно четырем (=4), то поправочный коэффициент k 1,4; при m = 3 k 1,3; при m = 2 k 1,2.. Более точное значение для доверительной вероятности Р = 0,99 при числе составляющих m ≤ 4 в зависимости от соотношения составляющих l определяют по графику [k =f (m, l)]в соответствии с требованиями ГОСТ Р 8.736-2011.

Примечание. Погрешность, возникающая при использовании формулы (1.109) для суммирования НСП и при нахождении поправочного коэффициента k для доверительной вероятности Р = 0,99 по графику [k =f (m, l)], не превышает

5%.

Суммарную стандартную неопределенность, оцениваемую

по типу В,

, вычисляют по формуле:

 

 

 

 

 

 

 

 

 

 

 

m

2

 

 

 

 

j

 

 

 

.uC B =

 

 

(1.110)

3

 

j 1

 

 

 

При наличии нескольких НСП, заданных доверительными границами , рассчитанными по формуле (1.109), доверительную границу НСП результата однократного измерения вычисляют по формуле

 

m

2

(P )

 

 

 

(P) = k

 

j

 

i

.

(1.111)

 

2

 

 

j 1

ki

 

 

 

 

 

 

 

 

 

 

 

113

РАЗДЕЛ МЕТРОЛОГИЯ

При условии, указанном выше, суммарную стандартную неопределенность, оцениваемую по типу В, вычисляют по формуле:

u B = k C

m

 

2

(P )

 

 

 

j

2

i

 

 

 

j 1

 

k

i

3

 

 

 

,

(1.112)

где j(Рi) – доверительная граница j-й НСП, соответствующая доверительной вероятности Рi; k и ki - коэффициенты, соответствующие доверительным ве-

роятностям Р и Рi.

Значения коэффициентов k и ki определяют в соответствии с требованиями.

1.7.5. Оценивание случайной погрешности и стандартной неопределенности, оцениваемой по типу А, результата измерения

Доверительные границы случайной погрешности и стандартную неопределенность, оцениваемую по типу А, результата измерения вычисляют следующим образом.

Если случайные погрешности представлены несколькими СКО Si, то СКО

 

~

 

результата однократного измерения S(

A

) вычисляют по формуле:

 

~

m

2

S(A) =

Si

 

i 1

,

(1.113)

Учитывая условия 7.1.1, стандартную неопределенность, оцениваемую по типу А, результата однократного измерения вычисляют по формуле:

uA

 

m

 

 

 

 

 

2

 

=

u

i. A ,

 

 

 

 

 

i 1

 

 

Где m- число составляющих случайных погрешностей;

, = .

(1.114)

Доверительную границу случайной погрешности результата измерения (P) вычисляют по формуле:

(P) Z

P/2

 

~ S(A)

,

(1.115)

где ZP/2 - точка нормированной функции Лапласа, отвечающая вероятности

P. При доверительной вероятности Р = 0,95 Z0,95/2 = 2 принимают равным 2, при

Р = 0,99 Z0,99/2 = 2,6.

Если случайные погрешности представлены доверительными границами(P), соответствующими одной и той же вероятности, доверительную границу

114

РАЗДЕЛ МЕТРОЛОГИЯ

случайной погрешности результата однократного измерения вычисляют по формуле:

(P)

m

i

 

2

 

i 1

(P)

,

(1.116)

Если случайные погрешности представлены доверительными границами, соответствующими разным вероятностям, сначала определяют СКО результата измерения по формуле:

~ S( A)

m

 

 

 

 

 

 

2

(P ) / Z

2

 

P / 2

 

 

i

 

 

 

 

i

i 1

 

 

 

 

,

(1.117)

а затем вычисляют доверительные границы случайной погрешности результата измерения по формуле (11).

1.7.6. Оценивание погрешности и расширенной неопределенности результата измерения

Если погрешности метода и оператора пренебрежимо малы по сравнению с погрешностью используемых СИ (не превышают 15% погрешности СИ), то за погрешность результата измерения принимают погрешность используемых СИ.

Если

~ S( A)

0,8, то НСП или стандартной неопределенностью, оцениваемой

по типу В, пренебрегают и принимают в качестве погрешности или неопределенности результата измерения доверительные границы случайных погрешностей или расширенную неопределенность для уровня доверия , вычисляемую по

формуле U(P)=

0

.

 

 

 

 

Если

8, то случайными погрешностями или стандартной неопреде-

~

 

S( A)

 

 

 

ленностью, оцениваемой по типу А, пренебрегают и принимают в качестве погрешности или неопределенности результата измерения границы НСП или рас-

ширенную неопределенность для уровня доверия

, вычисляемую по формуле

U(P)=

.

 

 

 

 

0

 

 

 

Если 0,8

8, то доверительную границу погрешности результата из-

~

 

 

S( A)

 

 

мерений Δ(Р) вычисляют по формуле:

 

 

 

 

(P) = K[ (P) + (P)],

(1.118)

где К - коэффициент, значение которого для доверительной вероятности 0,95 равно 0,76; для доверительной вероятности 0,99 значение коэффициента K

115

РАЗДЕЛ МЕТРОЛОГИЯ

равно 0,83.

Расширенную неопределенность для уровня доверия P вычисляют по формуле:

U(P) k0

2

2

uA

uB

,

(1.119)

где 0- коэффициент охвата (коэффициент, используемый как множитель суммарной неопределенности для получения расширенной неопределенности). Значение коэффициента охвата для доверительной вероятности Р = 0,95 считают равным 2, для доверительной вероятности Р = 0,9 - равным 3.

Форма представления результата измерения.

 

При симметричной доверительной погрешности результат однократного из-

~

~

~

мерения представляют в форме A ;± (P);(P) или

A ;± (P), или

A ;±U(P).

Значение результата измерения должно оканчиваться цифрами того же разряда, что и значение погрешности или расширенной неопределенности для уровня доверия.

1.7.7. Математическая обработка результатов косвенных измерений

Порядок статистической обработки результатов косвенных измерений можно представить следующим образом:

1. Статистическая обработка результатов прямых измерений и нахождение

Ãi и S(Ã)i .

2. Расчет искомого значения ФВ (точечной оценки результата косвенных

измерений):

 

Q = f(Ã1, Ã2,..., Ãn),

(1.120)

3.Определение оценки каждой частной погрешности с учетом ее весового коэффициента

EXi = ki S(Ã)I ,

(1.121)

Где:

ki = дf/дÃi. ,

(1.122)

4. Определение оценки погрешности (среднего квадратического отклонения) результата косвенного измерения. Оценку погрешности результата косвенного измерения рассчитывают с учетом весовых коэффициентов частных погрешностей. При значимой стохастической связи оценка среднего квадратического отклонения (оценка погрешности косвенного измерения) рассчитывается с

116

РАЗДЕЛ МЕТРОЛОГИЯ

учетом коэффициента корреляции Rij (определяют традиционными статистическими расчетами)

 

 

 

n

E

 

2

 

n

 

 

S

Qi

 

 

Xi

 

R E E

j

 

 

 

 

 

ij

i

 

 

 

i 1

 

 

 

 

i 1

 

 

,

(1.123)

При практическом отсутствии корреляции между величинами, получаемыми в результате прямых измерений, что имеет место, например, в независимых измерениях длин для определения объема или длин и массы для расчета плотности

 

n

 

SQi

EXi

2

 

 

i 1

 

,

(1.124)

5. Определение значения коэффициента Стьюдента t в зависимости от выбранной доверительной вероятности Р и запись результата косвенного измерения в установленной форме

Q tS

, Р

Qi

 

0,...

,

(1.125)

Результаты прямых и косвенных измерений должны отвечать требованиям обеспечения единства измерений, то есть в описании результата следует использовать узаконенные единицы физических величин и указывать оценки погрешностей.

1.7.8. Методы выявления и исключения погрешностей

Для повышения точности методов и результатов измерений применяют методы выявления и исключения погрешностей, которые можно разделить на следующие группы.

I По способу получения измерительной информации:

1.1Аналитические, основанные на применении информационного фонда - априорной информации - теоретических моделях и расчетах, и апостериорной информации, полученной в предыдущих экспериментальных исследованиях или другими лабораториями.

1.2Инструментальные методы основаны на уменьшении и/или компенсации погрешностей аппаратурным путем на основе организации эксперимента.

1.3Комбинированные методы основаны на двух предыдущих группах и предполагают наличие превентивной оценки с возможностью корректировки настроек и показателей

117

РАЗДЕЛ МЕТРОЛОГИЯ

II В зависимости от этапа измерительного процесса различают методы,

применяемые: до выполнения измерения, в процессе выполнения измерения, после выполнения измерения.

 

 

 

Таблица 1.1.

 

Методы выявления и исключения погрешности

 

 

 

 

 

Способ получения измерительной информации

Этап измери-

Аналитический

Инструментальны

Комбинированный

тельного про-

 

 

 

цесса

 

 

 

до выполне-

априор-

валидация

мониторинг влияю-

ния измере-

ная оценка

 

щих факторов

ния

 

 

 

в процессе

Прогнозирова-

Сравнение с эталоном

анализ

выполнения

ние, превентив-

Сравнение с точным методом

 

измерения

ная корректи-

Компенсация

 

 

ровка моделей

 

 

 

 

 

 

После выпол-

введение попра-

повторение измерений

верификация

нения измере-

вок

 

 

ния

 

 

 

1.7.9. Аналитические методы выявления и исключения погрешностей

Аналитические методы выявления и исключения погрешностей до выполнения измерения основаны на априорной оценке влияний и точности, приводимой в нормативно-технической документации элементов, участвующих в процессе измерения:

1)эталонов, стандартных образцов, средств измерений и измерительных принадлежностей (информация берется из сертификата утверждения типа, свидетельства о поверке (калибровке), заключения метрологической экспертизы, технического паспорта, стандарта и т.д.);

2)оператора (документация по учету кадров о необходимой квалификации, повышении квалификации, аттестации персонала, переподготовке и др.);

3)влияющих величин (требования нормативных документов к условиям измерений и записи в журналах регистрации лаборатории о значениях влажности, давления, температуры окружающей среды, магнитных полях, вибрациях, освещенности, запыленности и т.д.);

4)объектов измерений (идентификационные записи о маркировке, упаковке, транспортировке, хранении, обращении и т.д.).

На основе полученной априорной информации осуществляют функциональный анализ погрешностей методики измерений путем их комплексирования

ипроводят профилактические мероприятия для сведения погрешностей к минимуму.

118

РАЗДЕЛ МЕТРОЛОГИЯ

Аналитические методы выявления и исключения погрешностей в процессе выполнения измерения заключаются в прогнозировании поведения функциональных зависимостей измеряемых и влияющих величин и превентивой корректировке разработанных теоретических моделей в цикле через обратную связь.

Аналитические методы выявления и исключения погрешностей, реализуемые после выполнения измерения, заключаются в оценивании разбросов и выбросов, «исправлении» результатов измерений - статистической обработке измерительной информации, аппроксимациях, определении характера и тенденций систематической составляющей погрешности, оценке значимости смещения, введении поправок и поправочных коэффициентов с целью уменьшения смещения.

1.7.9. Инструментальные методы выявления и исключения погрешностей

Инструментальные методы выявления и исключения погрешностей, применяемые до выполнения измерения по сути реализуются в процессе валидации.

Валидация (согласно СТБ ISO 9000) подтверждение посредством предоставления объективного свидетельства того, что требования к конкретному предполагаемому использованию или применению, были выполнены. Способы валида-

ции согласно ГОСТ ISO/IEC 17025-2019:

1)калибровка и/или оценивание оценка погрешности/отклонения и прецизионности (точности) с применением исходных эталонов или стандартных образцов;

2)систематическая оценка факторов, влияющих на результат;

3)метод испытания устойчивости путем изменения контролируемых параметров, таких как температура инкубатора, выдаваемого объема и т.д.;

4)сравнение с результатами, полученными с помощью других методов;

5)межлабораторные сличения;

Инструментальные методы в процессе выполнения измерения реализуются

спомощью процедур:

1)сравнение измеряемой величины с мерой (эталоном, стандартным образ-

цом);

2)сравнение с референтным (более точным) методом измерений;

3)поднастройка, корректировка измерительной системы;

4)применение специальных технических компенсирующих устройств;

5)метод разностных сигналов;

6)метод четного числа повторных измерений в серии и др.

После выполнения процесса измерения инструментальные методы реализуются через повторение серии измерений в случае, если решение по результам измерений не может быть окончательным (ситуация возникновения рисков ошибок первого и второго рода).

119

РАЗДЕЛ МЕТРОЛОГИЯ

1.7.10. Комбинированные методы выявления и исключения погрешностей

Комбинированные методы выявления и исключения погрешностей применяемые до выполнения измерения, осуществляются путем проведения мониторинга влияющих факторов: поддержания квалификации операторов, поверки и калибровки средств измерений, аттестации измерительного оборудования, поддержания условий измерений в установленных пределах, управления объектами измерений и документацией. Комбинированные методы в процессе выполнения измерения реализуются в превентивной оценке факторов, влияющих на результат, а также точности. После выполнения измерения комбинированные методы заключаются в верификации.

Верификация - предоставление объективных свидетельств того, что данный объект соответствует заданным требованиям. Способы верификации аналогичны валидации, также включая теоретические расчеты погрешностей и неопределенностей.

1.8. Основы концепции неопределенности

1.8.1. Понятие и меры неопределенности

Согласно ГОСТ Р 54500.1-2011/Руководство ИСО/МЭК 98-1:2009 «неопре-

деленность» – параметр связанный с результатом измерения, характеризующий рассеяние значений, которые могут быть обоснованно приписаны измеряемой величине.

Процесс оценивания неопределенности можно представить в виде «четырех этапов» или «методом восьми шагов»:

1)описание измерения и составление его модели;

2)оценивание значений и стандартных неопределенностей входных вели-

чин;

3)анализ корреляций;

4)составление бюджета неопределенности;

5)расчет значения выходной величины;

6)расчет суммарной стандартной неопределенности;

7)расчет расширенной неопределенности;

8)представление конечного результата измерения.

Стандартная неопределеннность – неопределенность, выраженное как стандартное отклонение u(x) по типу А или по типу B.

Суммарная стандартная неопределенность – стандартная неопределен-

ность результата измерения, когда результат получают из значений ряда других величин, равная положительному квадратному корню суммы членов, причем

120

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]